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Bidirectional Transformations (BX)

A B

to

from

A ⇔ B

database source ⇔ materialized view
software model ⇔ code

document representation ⇔ screen visualization
concrete syntax ⇔ abstract syntax

abstract datatype ⇔ actual implementation
program input ⇔ program output
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Objectives for this Talk

I get everybody into “BX mode” for the week

I set out basic premises of the PL approach,
paradigmatic problems

I introduce terminology and semantic principles

I no details of specific solutions

I relate to what “we” think is solved and what not

I open discussion
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What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains
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also, focus on asymmetric setting:

I to usually non-injective, henceforth called get

I from then called put, definitely needs extra info

I for simplicity, state-based

I “sources” and “views”
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Bidirectional Transformations

Some further relevant aspects:

I What artifacts need to be specified?
I both get and put
I only one of them, the other derived
I a more abstract artifact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

8 – 30/30

answers/approaches
vary with field
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Bidirectional Transformations

Specific asymmetric setting, state-based:

source view

s v

s ′ v ′

get

put

update

get :: S → V
put :: S → V → S
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About Behavior under No-Change

       foo 5 foo

project out string component

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 34/40

Principle: If the view does
not change, neither should
the source.
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Somewhat more Challenging

       foo 0 foo

project out and duplicate string component

foo

If we want to allow such behavior, we need to
weaken the PutGet law (and people have done so).
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About Consistent Composition

       

       

foo 0

bar 1 bar

foo

increment numeric component
if string component has changed
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quux
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About Consistent Composition

       

       

       

foo 0

bar 1

quux 2 quux

bar

foo

translated updates produce
"side effects" on source

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′
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About Consistent Composition

       

       

foo 0

bar 1

foo

bar

foo

restore original target

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′
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Less Debatable

Actually a consequence of GetPut and PutGet,
the PutTwice law:

put (put s v) v = put s v

We’ll get back to this property in a moment.
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Ambiguity of put



How many puts are there?

S

V

Due to non-injectivity, get can map many objects
from S onto the same object from V .

17 – 63/69
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only exactly one “very well-behaved”
put per get!
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How many puts are there?

S

V

?? ?

Moreover, if the lens doesn’t need to obey PutPut,
then the behavior of put is much less constrained. . .

. . . and there are even more puts to choose from!
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How many puts are there?

S

V

Moreover, if the lens doesn’t need to obey PutPut,
then the behavior of put is much less constrained. . .

. . . and there are even more puts to choose from!

So, definitely need extra information to select one.
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On the Other Hand. . .

. . . there is only one get per “well-behaving” put!

Specifically, if put is surjective, is injective for
every s, and satisfies PutTwice, then there is exactly
one get such that the two together satisfy GetPut
and PutGet. And, there are equivalent, even nicer
conditions formulated just in terms of put as well.

[Fischer, Hu, Pacheco]

There are even first concrete bidirectionalization
techniques derived from this put-based approach!
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Conclusion / Discussion (?)



“Solved”

I a lot of very nice definitive work on semantics

I successful methods for automatic derivation of
reasonable put- from get-functions on strings,
trees, and graphs (?)

I combinator languages with powerful
type systems

I program transformations based on
constant-complement

I query languages with automatic tracing
I grammar-based approaches
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Open Problems

Leaving the academic niche:

I “How to deliver BX to the masses? Some
effective way to integrate BX with existing
general programming languages would be nice.
Most tools/languages are very academic, and I
don’t see them being used for industrial case
studies. . . ”

I “But I think to really achieve world domination,
a BX framework will need to make substantial
progress on having an attractive and intuitive
front-end.”
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Open Problems

Tackling ambiguities effectively:

I “Can we design a declarative language that can
be used to describe any intentional bidirectional
behavior (i.e., have full control of bidirectional
behavior)?”

I “We still lack effective, intuitive (user-friendly)
and generic mechanisms to tame the
non-determinism of backwards transformation.”

I “Ability to control the choice between multiple
valid backward transformation results.
[. . . ] clarify to what extent user can control by
writing different get (forward) transformations.”
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Open Problems

Handling richer semantic domains:

I “[. . . ] still no effective solution for non-tree
shaped domains.”

I “Bx on ordered graphs (outgoing edges are
ordered) and graphs in which ordered and
unordered edges are mixed.”

I “Handling of constraints over the domains (that
is, handling non CFG-like domains). DB people
have some work on this (handling keys,
functional dependencies, inclusion dependencies,
etc), but the issue seems ignored by PL people.”
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“Conclusion”

There is a lot of potential and possible inspiration
from PL land for the general area of BX.

Challenges remain:

I scaling up in every way

I providing control over nondeterminism

I capturing user/programmer intentions

I handling richer structures/domains

I running efficiently
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