
Bidirectional Transformations
—

a PL perspective

BIRS meeting on BX, 2013

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B

database source ⇔ materialized view
software model ⇔ code

document representation ⇔ screen visualization
concrete syntax ⇔ abstract syntax

abstract datatype ⇔ actual implementation
program input ⇔ program output

1 – 1/1

Bidirectional Transformations

a1 b1
to

2 – 2/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

2 – 3/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

2 – 4/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3

2 – 5/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2 – 6/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2 – 7/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2 – 8/11

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2 – 9/11

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

a3

∆

b3
to

∆

2 – 10/11

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

a3

∆

b3
to

∆

∆

∆

2 – 11/11

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Objectives for this Talk

I get everybody into “BX mode” for the week

I set out basic premises of the PL approach,
paradigmatic problems

I introduce terminology and semantic principles

I no details of specific solutions

I relate to what “we” think is solved and what not

I open discussion

3 – 12/12

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 13/19

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 14/19

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 15/19

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 16/19

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 17/19

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 18/19

What’s specific about “the PL approach”, anyway?

I focus on the transformations/functions
themselves, not so much on the data

I focus on extensional semantics and laws

I correctness by construction/derivation
(as opposed to a-posteriori verification)

I assuming a very clean setting (naive?)

I being driven by our favourite new PL techniques

I typically, algebraic data domains

4 – 19/19

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

a3

∆

b3
to

∆

∆

∆

5 – 20/20

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

∆

also, focus on asymmetric setting:

I to usually non-injective, henceforth called get

I from then called put, definitely needs extra info

I for simplicity, state-based

I “sources” and “views”

6 – 21/23

focus on:

I single-side updates

I one-step updates

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

∆

also, focus on asymmetric setting:

I to usually non-injective, henceforth called get

I from then called put, definitely needs extra info

I for simplicity, state-based

I “sources” and “views”
6 – 22/23

focus on:

I single-side updates

I one-step updates

Bidirectional Transformations

s v
get

v ′

∆

s ′
put

∆

also, focus on asymmetric setting:

I to usually non-injective, henceforth called get

I from then called put, definitely needs extra info

I for simplicity, state-based

I “sources” and “views”
6 – 23/23

focus on:

I single-side updates

I one-step updates

Bidirectional Transformations

A closer look at representing s v connections.

For example:

x
y
z
u
v

y
z
u
v

get

or

x
y
z
u
v

y
z
u
v

get

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

7 – 24/29

Bidirectional Transformations

A closer look at representing s v connections.

For example:

x
y
z
u
v

y
z
u
v

get

or

x
y
z
u
v

y
z
u
v

get

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

7 – 25/29

Bidirectional Transformations

A closer look at representing s v connections.

For example:

x
y
z
u
v

y
z
u
v

get

or

x
y
z
u
v

y
z
u
v

get

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

7 – 26/29

Bidirectional Transformations

A closer look at representing s v connections.

For example:

x
y
z
u
v

y
z
u
v

get

or

x
y
z
u
v

y
z
u
v

get

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

7 – 27/29

Bidirectional Transformations

A closer look at representing s v connections.

For example:

x
y
z
u
v

y
z
u
v

get

or

x
y
z
u
v

y
z
u
v

get

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

7 – 28/29

Bidirectional Transformations

A closer look at representing s v connections.

For example:

x
y
z
u
v

y
z
u
v

get

or

x
y
z
u
v

y
z
u
v

get

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

7 – 29/29

Bidirectional Transformations

Some further relevant aspects:

I What artifacts need to be specified?
I both get and put
I only one of them, the other derived
I a more abstract artifact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

8 – 30/30

answers/approaches
vary with field

Properties / Laws

Bidirectional Transformations

Specific asymmetric setting, state-based:

source view

s v

s ′ v ′

get

put

update

get :: S → V
put :: S → V → S

10 – 32/33

assumed
total!

Bidirectional Transformations

Specific asymmetric setting, state-based:

source view

s v

s ′ v ′

get

put

update

get :: S → V
put :: S → V → S

10 – 33/33

assumed
total!

About Behavior under No-Change

 foo 5 foo

project out string component

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 34/40

Principle: If the view does
not change, neither should
the source.

About Behavior under No-Change

 foo 5

bar

foo

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 35/40

Principle: If the view does
not change, neither should
the source.

About Behavior under No-Change

foo 5

bar 0 bar

foo

propagate
updated string

always set numeric
field to 0

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 36/40

Principle: If the view does
not change, neither should
the source.

About Behavior under No-Change

 foo 5

foo

foo

=

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 37/40

Principle: If the view does
not change, neither should
the source.

About Behavior under No-Change

foo 5

foo 0 foo

foo

=≠

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 38/40

Principle: If the view does
not change, neither should
the source.

About Behavior under No-Change

foo 5

foo 0 foo

foo

=≠

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.

11 – 39/40

Principle: If the view does
not change, neither should
the source.

About Behavior under No-Change

foo 5

foo 0 foo

foo

=≠

To prevent this, the GetPut law:

put s (get s) = s

NB: For this, put must be surjective.
11 – 40/40

Principle: If the view does
not change, neither should
the source.

About Preservation of Changes

 foo 0 foo

project out string component

To prevent this, the PutGet law:

get (put s v) = v

NB: For this, put s must be injective for every s.

12 – 41/46

Principle: Updates
should be translated
exactly.

About Preservation of Changes

 foo 0

bar

foo

To prevent this, the PutGet law:

get (put s v) = v

NB: For this, put s must be injective for every s.

12 – 42/46

Principle: Updates
should be translated
exactly.

About Preservation of Changes

foo 0

blech 5 bar

foo

return a constant

To prevent this, the PutGet law:

get (put s v) = v

NB: For this, put s must be injective for every s.

12 – 43/46

Principle: Updates
should be translated
exactly.

About Preservation of Changes

foo 0

blech 5 bar

foo

 blech

≠

To prevent this, the PutGet law:

get (put s v) = v

NB: For this, put s must be injective for every s.

12 – 44/46

Principle: Updates
should be translated
exactly.

About Preservation of Changes

foo 0

blech 5 bar

foo

 blech

≠

To prevent this, the PutGet law:

get (put s v) = v

NB: For this, put s must be injective for every s.

12 – 45/46

Principle: Updates
should be translated
exactly.

About Preservation of Changes

foo 0

blech 5 bar

foo

 blech

≠

To prevent this, the PutGet law:

get (put s v) = v

NB: For this, put s must be injective for every s.
12 – 46/46

Principle: Updates
should be translated
exactly.

Somewhat more Challenging

 foo 0 foo

project out and duplicate string component

foo

If we want to allow such behavior, we need to
weaken the PutGet law (and people have done so).

13 – 47/51

Somewhat more Challenging

 foo 0

bar

foo foo

foo

If we want to allow such behavior, we need to
weaken the PutGet law (and people have done so).

13 – 48/51

Somewhat more Challenging

foo 0

bar 0 bar

foo

propagate "newest" string

foo

foo

If we want to allow such behavior, we need to
weaken the PutGet law (and people have done so).

13 – 49/51

Somewhat more Challenging

foo 0

bar 0 bar

foo

 bar

≠

foo

foo

bar

If we want to allow such behavior, we need to
weaken the PutGet law (and people have done so).

13 – 50/51

Somewhat more Challenging

foo 0

bar 0 bar

foo

 bar

≠

foo

foo

bar

If we want to allow such behavior, we need to
weaken the PutGet law (and people have done so).

13 – 51/51

About Consistent Composition

 foo 0 foo

project out string component

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 52/59

About Consistent Composition

 foo 0

bar

foo

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 53/59

About Consistent Composition

foo 0

bar 1 bar

foo

increment numeric component
if string component has changed

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 54/59

About Consistent Composition

foo 0

bar 1

quux

bar

foo

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 55/59

About Consistent Composition

foo 0

bar 1

quux 2 quux

bar

foo

translated updates produce
"side effects" on source

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 56/59

About Consistent Composition

foo 0

bar 1

foo

bar

foo

restore original target

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 57/59

About Consistent Composition

foo 0

bar 1

foo 2 foo

bar

foo

original source
is not restored

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′

14 – 58/59

About Consistent Composition

foo 0

bar 1

foo 2 foo

bar

foo

original source
is not restored

To prevent this, the PutPut law:

put (put s v) v ′ = put s v ′
14 – 59/59

Less Debatable

Actually a consequence of GetPut and PutGet,
the PutTwice law:

put (put s v) v = put s v

We’ll get back to this property in a moment.

15 – 60/61

Less Debatable

Actually a consequence of GetPut and PutGet,
the PutTwice law:

put (put s v) v = put s v

We’ll get back to this property in a moment.

15 – 61/61

Ambiguity of put

How many puts are there?

S

V

Due to non-injectivity, get can map many objects
from S onto the same object from V .

17 – 63/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

In essence, get projects out part of the information
in the source object. . .

17 – 64/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

In essence, get projects out part of the information
in the source object. . . and throws away the rest.

17 – 65/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

After an update,

17 – 66/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

After an update, the “view part” of the new source
object is fixed by PutGet. . .

17 – 67/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

After an update, the “view part” of the new source
object is fixed by PutGet. . . and if the lens obeys
PutPut, the “projected away part” is fixed to be
exactly the one from the original source.

17 – 68/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

After an update, the “view part” of the new source
object is fixed by PutGet. . . and if the lens obeys
PutPut, the “projected away part” is fixed to be
exactly the one from the original source.

17 – 69/69

Even this doesn’t mean that there is
only exactly one “very well-behaved”
put per get!

How many puts are there?

S

V

?? ?

Moreover, if the lens doesn’t need to obey PutPut,
then the behavior of put is much less constrained. . .

. . . and there are even more puts to choose from!

18 – 70/71

How many puts are there?

S

V

Moreover, if the lens doesn’t need to obey PutPut,
then the behavior of put is much less constrained. . .

. . . and there are even more puts to choose from!

So, definitely need extra information to select one.
18 – 71/71

On the Other Hand. . .

. . . there is only one get per “well-behaving” put!

Specifically, if put is surjective, is injective for
every s, and satisfies PutTwice, then there is exactly
one get such that the two together satisfy GetPut
and PutGet. And, there are equivalent, even nicer
conditions formulated just in terms of put as well.

[Fischer, Hu, Pacheco]

There are even first concrete bidirectionalization
techniques derived from this put-based approach!

19 – 72/75

On the Other Hand. . .

. . . there is only one get per “well-behaving” put!

Specifically, if put is surjective, is injective for
every s, and satisfies PutTwice, then there is exactly
one get such that the two together satisfy GetPut
and PutGet.

And, there are equivalent, even nicer
conditions formulated just in terms of put as well.

[Fischer, Hu, Pacheco]

There are even first concrete bidirectionalization
techniques derived from this put-based approach!

19 – 73/75

On the Other Hand. . .

. . . there is only one get per “well-behaving” put!

Specifically, if put is surjective, is injective for
every s, and satisfies PutTwice, then there is exactly
one get such that the two together satisfy GetPut
and PutGet. And, there are equivalent, even nicer
conditions formulated just in terms of put as well.

[Fischer, Hu, Pacheco]

There are even first concrete bidirectionalization
techniques derived from this put-based approach!

19 – 74/75

On the Other Hand. . .

. . . there is only one get per “well-behaving” put!

Specifically, if put is surjective, is injective for
every s, and satisfies PutTwice, then there is exactly
one get such that the two together satisfy GetPut
and PutGet. And, there are equivalent, even nicer
conditions formulated just in terms of put as well.

[Fischer, Hu, Pacheco]

There are even first concrete bidirectionalization
techniques derived from this put-based approach!

19 – 75/75

Conclusion / Discussion (?)

“Solved”

I a lot of very nice definitive work on semantics

I successful methods for automatic derivation of
reasonable put- from get-functions on strings,
trees, and graphs (?)

I combinator languages with powerful
type systems

I program transformations based on
constant-complement

I query languages with automatic tracing
I grammar-based approaches

21 – 77/77

Open Problems

Leaving the academic niche:

I “How to deliver BX to the masses? Some
effective way to integrate BX with existing
general programming languages would be nice.
Most tools/languages are very academic, and I
don’t see them being used for industrial case
studies. . . ”

I “But I think to really achieve world domination,
a BX framework will need to make substantial
progress on having an attractive and intuitive
front-end.”

22 – 78/78

Open Problems

Tackling ambiguities effectively:

I “Can we design a declarative language that can
be used to describe any intentional bidirectional
behavior (i.e., have full control of bidirectional
behavior)?”

I “We still lack effective, intuitive (user-friendly)
and generic mechanisms to tame the
non-determinism of backwards transformation.”

I “Ability to control the choice between multiple
valid backward transformation results.
[. . .] clarify to what extent user can control by
writing different get (forward) transformations.”

23 – 79/79

Open Problems

Handling richer semantic domains:

I “[. . .] still no effective solution for non-tree
shaped domains.”

I “Bx on ordered graphs (outgoing edges are
ordered) and graphs in which ordered and
unordered edges are mixed.”

I “Handling of constraints over the domains (that
is, handling non CFG-like domains). DB people
have some work on this (handling keys,
functional dependencies, inclusion dependencies,
etc), but the issue seems ignored by PL people.”

24 – 80/80

“Conclusion”

There is a lot of potential and possible inspiration
from PL land for the general area of BX.

Challenges remain:

I scaling up in every way

I providing control over nondeterminism

I capturing user/programmer intentions

I handling richer structures/domains

I running efficiently

25 – 81/81

