
Circular vs. Higher-Order Shortcut Fusion

Janis Voigtländer

Technische Universität Dresden

March 30th, 2009

Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then []

else i : go (i + 1)

2

Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then []

else i : go (i + 1)

sum [] = 0
sum (x : xs) = x + sum xs

2

Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then []

else i : go (i + 1)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

2

Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then []

else i : go (i + 1)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build .

2

Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then []

else i : go (i + 1)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build .
2. Write sum in terms of foldr .

2

Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then []

else i : go (i + 1)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build .
2. Write sum in terms of foldr .
3. Use the following fusion rule:

foldr h1 h2 (build g) g h1 h2

2

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

3

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

filterAndCount :: (b → Bool) → [b] → ([b], Int)
filterAndCount f = buildp · · ·

3

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

3

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

normalise :: ([Int], Int) → [Float]
normalise = pfold · · ·

3

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

The fusion rule:

pfold h1 h2 (buildp g c)

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

3

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

The fusion rule:

pfold h1 h2 (buildp g c)

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

3

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

4

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

The type of g forces it to be essentially of the following form:

λcon nil c →
,

con

b1 con

b2

con

bn nil

z

4

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

The type of g forces it to be essentially of the following form:

λcon nil c →
,

con

b1 con

b2

con

bn nil

z

Formal justification: free theorems [Wadler, FPCA’89]

4

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

A concrete output (buildp g c) will be consumed as follows:

,

:

b1 :

b2

:

bn []

z

7→

h1

b1 h1

b2

h1

bn h2

z

z

z

z

5

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

pfold h1 h2 (g (:) [] c)

h1

b1 h1

b2

h1

bn h2

z

z

z

z

6

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

pfold h1 h2 (g (:) [] c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

,

h1

b1 h1

b2

h1

bn h2

z

snd

6

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

pfold h1 h2 (g (:) [] c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

h1

b1 h1

b2

h1

bn h2

z

z

z

z

snd

,

h1

b1 h1

b2

h1

bn h2

z

6

Circular Shortcut Fusion [Fernandes et al., Haskell’07]

pfold h1 h2 (g (:) [] c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

h1

b1 h1

b2

h1

bn h2

z

z

z

z

h1

b1 h1

b2

h1

bn h2

z

6

This is Where I got Interested

◮ Free-theorems-based transformations had been studied before.

7

This is Where I got Interested

◮ Free-theorems-based transformations had been studied before.

◮ . . . but been found to not be totally correct when considering
certain language features [Johann and V., POPL’04].

7

This is Where I got Interested

◮ Free-theorems-based transformations had been studied before.

◮ . . . but been found to not be totally correct when considering
certain language features [Johann and V., POPL’04].

◮ Circular shortcut fusion depends on evaluation order, which is
precisely a “dangerous” corner for free theorems.

7

This is Where I got Interested

◮ Free-theorems-based transformations had been studied before.

◮ . . . but been found to not be totally correct when considering
certain language features [Johann and V., POPL’04].

◮ Circular shortcut fusion depends on evaluation order, which is
precisely a “dangerous” corner for free theorems.

◮ So would it be possible to manufacture counterexamples?

7

A Problem with Selective Strictness

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

In Haskell, g could also be, for example, of the following form:

λcon nil c → seq

nil ,

con

b1 con

b2

con

bn nil

z

8

A Problem with Selective Strictness

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

The type of g forces it to be essentially of the following form:

λcon nil c →
,

con

b1 con

b2

con

bn nil

z

9

A Problem with Selective Strictness

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [] c

In Haskell, g could also be, for example, of the following form:

λcon nil c → seq

nil ,

con

b1 con

b2

con

bn nil

z

10

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

11

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

seq

h2
,

h1

b1 h1

b2

h1

bn

z

snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

seq

h2
,

h1

b1 h1

b2

h1

bn

z

snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

seq

h2
,

h1

b1 h1

b2

h1

bn

z

snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

seq

h2
,

h1

b1 h1

b2

h1

bn

z

snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

seq

h2
,

h1

b1 h1

b2

h1

bn

z

snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

fst

seq

h2
,

h1

b1 h1

b2

h1

bn

z

snd

11

Total and Partial Correctness [V., FLOPS’08]

Theorem 1
If h2 ⊥ 6= ⊥ and h1 ⊥ ⊥ ⊥ 6= ⊥, then

pfold h1 h2 (buildp g c)
=

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

12

Total and Partial Correctness [V., FLOPS’08]

Theorem 1
If h2 ⊥ 6= ⊥ and h1 ⊥ ⊥ ⊥ 6= ⊥, then

pfold h1 h2 (buildp g c)
=

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

Theorem 2
Without preconditions,

pfold h1 h2 (buildp g c)
⊒

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

12

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

,

λ

h1

b1 $

λ

h1

bn $

λ

h2

z

$

fst snd

h1

b1 h1

b2

h1

bn h2

z

z

z

z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

,

λ

h1

b1 $

λ

h1

bn $

λ

h2

z

$

snd

h1

b1 h1

b2

h1

bn h2

z

z

z

z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

h1

b1 $

λ

h1

b2 $

λ

h1

bn $

λ

h2

z

h1

b1 h1

b2

h1

bn h2

z

z

z

z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

h1

b1 h1

b2 $

λ

h1

bn $

λ

h2

z

h1

b1 h1

b2

h1

bn h2

z

z

z

z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

h1

b1 h1

b2

h1

bn $

λ

h2

z

h1

b1 h1

b2

h1

bn h2

z

z

z

z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g (:) [] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

h1

b1 h1

b2

h1

bn h2

z

h1

b1 h1

b2

h1

bn h2

z

z

z

z

13

No Problem with Selective Strictness

For a g of the problematic form considered earlier:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

seq

λ

h2

,

λ

h1

b1 $

λ

h1

bn $

z

$

fst snd

14

Total Correctness [V., FLOPS’08]

Theorem 3
Without preconditions,

pfold h1 h2 (buildp g c)
=

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k, z) → k z

15

Total Correctness [V., FLOPS’08]

Theorem 3
Without preconditions,

pfold h1 h2 (buildp g c)
=

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k, z) → k z

15

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

◮ Intellectually, I find the circular approach more fascinating.

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

◮ Intellectually, I find the circular approach more fascinating.

◮ But semantically, the high-order approach is more robust.

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

◮ Intellectually, I find the circular approach more fascinating.

◮ But semantically, the high-order approach is more robust.

◮ Performance measurements do not give a very clear picture.

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

◮ Intellectually, I find the circular approach more fascinating.

◮ But semantically, the high-order approach is more robust.

◮ Performance measurements do not give a very clear picture.

◮ There are interesting interactions with rather low-level details
of the language implementation!

16

Tricky Sharing Issues — Circular Shortcut Fusion

pfold h1 h2 (buildp g c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

17

Tricky Sharing Issues — Circular Shortcut Fusion

pfold h1 h2 (buildp g c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

If h1 = λb a z → h′
1

b a (h z),

17

Tricky Sharing Issues — Circular Shortcut Fusion

pfold h1 h2 (buildp g c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

If h1 = λb a z → h′
1

b a (h z), then:

h′
1

b1 h′
1

b2

h′
1

bn h2

z

h

z

h

z

h

z

fst

,

h′
1

b1 h′
1

b2

h′
1

bn h2 h

h

h

z

snd

17

Tricky Sharing Issues — Circular Shortcut Fusion

pfold h1 h2 (buildp g c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

If h1 = λb a z → h′
1

b a (h z), then using full laziness:

h′
1

b1 h′
1

b2

h′
1

bn h2

z

h

z

fst

,

h′
1

b1 h′
1

b2

h′
1

bn h2

h

z

snd

17

Tricky Sharing Issues — Higher-Order Shortcut Fusion

pfold h1 h2 (buildp g c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

If h1 = λb a z → h′
1

b a (h z), then:

h′
1

b1 h′
1

b2

h′
1

bn h2

z

h

z

h

z

h

z

,

λ

h′
1

b1 $

λ

h′
1

bn $

λ

h2

h

h

z

$

fst snd

18

Tricky Sharing Issues — Higher-Order Shortcut Fusion

pfold h1 h2 (buildp g c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

If h1 = λb a z → h′
1

b a (h z), then using full laziness:

h′
1

b1 h′
1

b2

h′
1

bn h2

z

h

z

,

λ

h′
1

b1 $

λ

h′
1

bn $

λ

h2

h

h

z

$

fst snd

18

What can be Learnt

◮ Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

19

What can be Learnt

◮ Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

◮ These lessons also inform new developments for more classical
shortcut fusion techniques.

19

What can be Learnt

◮ Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

◮ These lessons also inform new developments for more classical
shortcut fusion techniques.

◮ There is still an interesting design space to explore!

19

Recent (and Future?) Developments

◮ [Pardo et al., PEPM’09] study circular and higher-order
shortcut fusion in the presence of monads.

20

Recent (and Future?) Developments

◮ [Pardo et al., PEPM’09] study circular and higher-order
shortcut fusion in the presence of monads.

◮ From a semantics perspective, the circular flavour is again
more intriguing.

20

Recent (and Future?) Developments

◮ [Pardo et al., PEPM’09] study circular and higher-order
shortcut fusion in the presence of monads.

◮ From a semantics perspective, the circular flavour is again
more intriguing.

◮ The higher-order flavour is (again) more generally applicable.

20

Recent (and Future?) Developments

◮ [Pardo et al., PEPM’09] study circular and higher-order
shortcut fusion in the presence of monads.

◮ From a semantics perspective, the circular flavour is again
more intriguing.

◮ The higher-order flavour is (again) more generally applicable.

◮ It should be interesting to investigate the interplay with other
fusion work involving monads [V., MPC’08].

20

References I

J.P. Fernandes, A. Pardo, and J. Saraiva.
A shortcut fusion rule for circular program calculation.
In Haskell Workshop, Proceedings, pages 95–106. ACM Press,
2007.

A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 223–232. ACM Press, 1993.

P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99–110. ACM Press, 2004.

21

References II

A. Pardo, J.P. Fernandes, and J. Saraiva.
Shortcut fusion rules for the derivation of circular and
higher-order monadic programs.
In Partial Evaluation and Program Manipulation, Proceedings,
pages 81–90. ACM Press, 2009.

S.L. Peyton Jones and D. Lester.
A modular fully-lazy lambda lifter in Haskell.
Software Practice and Experience, 21(5):479–506, 1991.

J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,

Proceedings, pages 124–132. ACM Press, 2002.

22

References III

J. Voigtländer.
Asymptotic improvement of computations over free monads.
In Mathematics of Program Construction, Proceedings,
volume 5133 of LNCS, pages 388–403. Springer-Verlag, 2008.

J. Voigtländer.
Semantics and pragmatics of new shortcut fusion rules.
In Functional and Logic Programming, Proceedings, volume
4989 of LNCS, pages 163–179. Springer-Verlag, 2008.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

23

	Classical Shortcut Fusion
	Circular Shortcut Fusion
	Correctness in Presence of Selective Strictness

	Higher-Order Shortcut Fusion
	A New Fusion Rule
	Correctness in Presence of Selective Strictness

	Circular vs. Higher-Order Shortcut Fusion
	Tricky Sharing Issues

	Conclusion
	References

