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Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then [ ]

else i : go (i + 1)
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Classical Shortcut Fusion [Gill et al., FPCA’93]

Example: upTo n = go 1
where go i = if i > n then [ ]

else i : go (i + 1)

sum [ ] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build .
2. Write sum in terms of foldr .
3. Use the following fusion rule:

foldr h1 h2 (build g) g h1 h2
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [ ] c
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [ ] c

filterAndCount :: (b → Bool) → [b] → ([b], Int)
filterAndCount f = buildp · · ·
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Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [ ] c

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

normalise :: ([Int], Int) → [Float]
normalise = pfold · · ·
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [ ] c

The type of g forces it to be essentially of the following form:

λcon nil c →
,

con

b1 con

b2

con

bn nil

z
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [ ] c

The type of g forces it to be essentially of the following form:

λcon nil c →
,

con

b1 con

b2

con

bn nil

z

Formal justification: free theorems [Wadler, FPCA’89]
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

Consuming intermediate results:

pfold :: (b → a → z → a) → (z → a) → ([b], z) → a

pfold h1 h2 (bs , z) = foldr (λb a → h1 b a z) (h2 z) bs

A concrete output (buildp g c) will be consumed as follows:

,

:

b1 :

b2

:

bn [ ]

z

7→

h1

b1 h1

b2

h1

bn h2

z

z

z

z
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

pfold h1 h2 (g (:) [ ] c) 

h1

b1 h1

b2

h1

bn h2

z

z

z

z
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Circular Shortcut Fusion [Fernandes et al., Haskell’07]

pfold h1 h2 (g (:) [ ] c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a
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z

z
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◮ Free-theorems-based transformations had been studied before.
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This is Where I got Interested

◮ Free-theorems-based transformations had been studied before.

◮ . . . but been found to not be totally correct when considering
certain language features [Johann and V., POPL’04].

◮ Circular shortcut fusion depends on evaluation order, which is
precisely a “dangerous” corner for free theorems.

◮ So would it be possible to manufacture counterexamples?
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A Problem with Selective Strictness

Producing intermediate results:

buildp :: (∀a. (b → a → a) → a → c → (a, z)) → c → ([b], z)
buildp g c = g (:) [ ] c

In Haskell, g could also be, for example, of the following form:

λcon nil c → seq

nil ,

con

b1 con

b2

con

bn nil

z
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Total and Partial Correctness [V., FLOPS’08]

Theorem 1
If h2 ⊥ 6= ⊥ and h1 ⊥ ⊥ ⊥ 6= ⊥, then

pfold h1 h2 (buildp g c)
=

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a
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Total and Partial Correctness [V., FLOPS’08]

Theorem 1
If h2 ⊥ 6= ⊥ and h1 ⊥ ⊥ ⊥ 6= ⊥, then

pfold h1 h2 (buildp g c)
=

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

Theorem 2
Without preconditions,

pfold h1 h2 (buildp g c)
⊒

let (a, z) = g (λb a → h1 b a z) (h2 z) c in a
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pfold h1 h2 (g (:) [ ] c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

,

λ

h1

b1 $

λ

h1

bn $

λ

h2

z

$
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bn h2

z

z

z
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No Problem with Selective Strictness

For a g of the problematic form considered earlier:

h1

b1 h1

b2

h1

bn h2

z

z

z

z

 

seq

λ

h2

,

λ

h1

b1 $

λ

h1

bn $

z

$

fst snd
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Total Correctness [V., FLOPS’08]

Theorem 3
Without preconditions,

pfold h1 h2 (buildp g c)
=

case g (λb k z → h1 b (k z) z) (λz → h2 z) c of (k, z) → k z
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Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

◮ Intellectually, I find the circular approach more fascinating.

◮ But semantically, the high-order approach is more robust.

◮ Performance measurements do not give a very clear picture.

◮ There are interesting interactions with rather low-level details
of the language implementation!
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Tricky Sharing Issues — Circular Shortcut Fusion
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pfold h1 h2 (buildp g c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

If h1 = λb a z → h′
1

b a (h z), then:

h′
1

b1 h′
1

b2

h′
1

bn h2

z

h

z

h

z

h

z
 

fst

,

h′
1

b1 h′
1

b2

h′
1

bn h2 h

h

h

z

snd
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pfold h1 h2 (buildp g c) let (a, z) = g (λb a → h1 b a z) (h2 z) c in a

If h1 = λb a z → h′
1

b a (h z), then using full laziness:

h′
1

b1 h′
1

b2
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,
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Tricky Sharing Issues — Higher-Order Shortcut Fusion

pfold h1 h2 (buildp g c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c

of (k, z) → k z

If h1 = λb a z → h′
1

b a (h z), then:

h′
1

b1 h′
1

b2

h′
1

bn h2

z

h

z

h

z

h

z
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λ
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1
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λ
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h
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$

fst snd
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Tricky Sharing Issues — Higher-Order Shortcut Fusion

pfold h1 h2 (buildp g c) case g (λb k z → h1 b (k z) z) (λz → h2 z) c
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1
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What can be Learnt
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studying new rules as well as new combinators.
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What can be Learnt

◮ Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

◮ These lessons also inform new developments for more classical
shortcut fusion techniques.

◮ There is still an interesting design space to explore!
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Recent (and Future?) Developments

◮ [Pardo et al., PEPM’09] study circular and higher-order
shortcut fusion in the presence of monads.

◮ From a semantics perspective, the circular flavour is again
more intriguing.

◮ The higher-order flavour is (again) more generally applicable.

◮ It should be interesting to investigate the interplay with other
fusion work involving monads [V., MPC’08].
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