Circular vs. Higher-Order Shortcut Fusion

Janis Voigtlander

Technische Universitat Dresden

March 30th, 2009

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

sum [] =0
sum (x : xs) = x + sum xs

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

sum [] =0
sum (x : xs) = x + sum xs

Problem: Expressions like
sum (upTo 10)

require explicit construction of intermediate results.

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

sum [] =0
sum (x : xs) = x + sum xs

Problem: Expressions like
sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build.

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

sum [] =0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build.
2. Write sum in terms of foldr.

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

sum [] =0
sum (x : xs) = x + sum xs

Problem: Expressions like
sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following fusion rule:

foldr h1 h2 (bUI/d g) ~ g h1 h2

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b — a—a) - a— c—(a,z)) — c— ([b],2)
buildp g c=g (:) [] ¢

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b — a—a) - a— c—(a,z)) — c— ([b],2)
buildp g c=g (:) [] ¢

filterAndCount :: (b — Bool) — [b] — ([b], Int)
filterAndCount f = buildp - --

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b — a—a) - a— c—(a,z)) — c— ([b],2)
buildp g c=g (:) [] ¢

Consuming intermediate results:

pfold :: (b —a—z—a)— (z— a)— ([b],z) — a
pfold hy hy (bs,z) = foldr (Ab a— hy b a z) (hy z) bs

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b — a—a) - a— c—(a,z)) — c— ([b],2)
buildp g c=g (:) [] ¢

Consuming intermediate results:

pfold :: (b —a—z—a)— (z— a)— ([b],z) — a
pfold hy hy (bs,z) = foldr (Ab a— hy b a z) (hy z) bs

normalise :: ([Int], Int) — [Float]
normalise = pfold - --

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:
buildp :: (Ya. (b —a—a) - a— c— (a,z)) — ¢c — ([b], 2)
buildp g c=g (:) [] ¢

Consuming intermediate results:

pfold :: (b —a—z—a)— (z— a)— ([b],z) — a
pfold hy hy (bs,z) = foldr (Ab a— hy b a z) (hy z) bs

The fusion rule:

pfold hy hy (buildp g c)

~

let (a,z) =g (Aba—h baz)(hhz)cina

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:
buildp :: (Ya. (b —a—a) - a— c— (a,z)) — ¢c — ([b], 2)
buildp g c=g (:) [] ¢

Consuming intermediate results:

pfold :: (b —a—z—a)— (z— a)— ([b],z) — a
pfold hy hy (bs,z) = foldr (Ab a— hy b a z) (hy z) bs

The fusion rule:

pfold hy hy (buildp g c)

~

let (a,z) =g (Aa—h baz)(hpz)cina

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c— (a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c— (a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

The type of g forces it to be essentially of the following form:

Acon nil ¢ — /’\

con z

/\

b; con

/\
by

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c— (a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

The type of g forces it to be essentially of the following form:

Acon nil ¢ — /’\

con z

/\

b; con

/\
by

con

/\
b, nil

Formal justification: free theorems [Wadler, FPCA'89]

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Consuming intermediate results:

pfold :: (b —a—z— a) — (z— a) — ([b],z) — a
pfold hy hy (bs,z) = foldr (Ab a— hy b a z) (hy z) bs

A concrete output (buildp g c) will be consumed as follows:

/\ /\\
bs

/\ /\\

/\ _ |
\ i ohy
; a
/\ bn hQ\Z
b] |

z

Circular Shortcut Fusion [Fernandes et al
pfold hy hy (g (2) [] ¢) ~

., Haskell'07]

Circular Shortcut Fusion [Fernandes et al., Haskell'07]
pfold hy hy (g (1) [] ¢) ~ let (a,z) =g (Aba— h1 baz)(hyz)cina

Circular Shortcut Fusion [Fernandes et al., Haskell'07]
pfold hy hy (g (1) [] ¢) ~ let (a,z) =g (Aba— h1 baz)(hyz)cina

Circular Shortcut Fusion [Fernandes et al., Haskell'07]
pfold hy hy (g (1) [] ¢) ~ let (a,z) =g (Aba— h1 baz)(hyz)cina

This is Where | got Interested

» Free-theorems-based transformations had been studied before.

This is Where | got Interested

» Free-theorems-based transformations had been studied before.

» ...but been found to not be totally correct when considering
certain language features [Johann and V., POPL'04].

This is Where | got Interested

» Free-theorems-based transformations had been studied before.

» ...but been found to not be totally correct when considering
certain language features [Johann and V., POPL'04].

» Circular shortcut fusion depends on evaluation order, which is
precisely a “dangerous” corner for free theorems.

This is Where | got Interested

» Free-theorems-based transformations had been studied before.

» ...but been found to not be totally correct when considering
certain language features [Johann and V., POPL'04].

» Circular shortcut fusion depends on evaluation order, which is
precisely a “dangerous” corner for free theorems.

» So would it be possible to manufacture counterexamples?

A Problem with Selective Strictness

Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c—(a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

In Haskell, g could also be, for example, of the following form:

Acon nil ¢ — S€9

A
ni /\

con z

/\

b; con

/\
by
\

con

/\
bn nil

A Problem with Selective Strictness

Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c— (a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

The type of g forces it to be essentially of the following form:

Acon nil ¢ — /’\

con z

/\

b; con

/\
by

A Problem with Selective Strictness

Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c—(a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

In Haskell, g could also be, for example, of the following form:

Acon nil ¢ — S€9

A
ni /\

con z

/\

b; con

/\
by
\

con

/\
bn nil

10

A Problem with Selective Strictness

This would lead to the following replacement:

11

A Problem with Selective Strictness

This would lead to the following replacement:

l

fst snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

i

fst snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

|

fst snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

|

fst snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

|

fst snd

11

A Problem with Selective Strictness

This would lead to the following replacement:

|

fst snd

11

Total and Partial Correctness [V., FLOPS'08]

Theorem 1
If hp L # 1L and hy L L I # 1, then

pfold hy hy (buildp g c)

let (a,z) =g (Aba—h baz)(hhz)cina

12

Total and Partial Correctness [V., FLOPS'08]

Theorem 1
If hp L # 1 and hy L 1L 1 #£ 1, then

pfold hy hy (buildp g c)

let (a,z) =g (Aba—h baz)(hhz)cina

Theorem 2
Without preconditions,

pfold hy hy (buildp g c)
=
let (a,z) =g (Aba—h baz)(hz)cina

12

Replacing Circularity by Higher-Orderedness
pfold hy hy (g (:) [] ¢) ~ let (a,z) =g (Aba— hy1 baz)(hyz)cina

13

Replacing Circularity by Higher-Orderedness

pfold hy hy (g (2) [] ¢) ~
case g (\bkz—h b(kz)z)(Az—hyz)c
of (k,z) = k z

13

Replacing Circularity by Higher-Orderedness

pfold h1 h2 (g

(:)[] c)~ case g (A\bkz— hy
of (k,z) > k z

$
/ \\ o nd
bi \/
/ \\ e
‘ ~ h‘l //I ‘\‘
o L
N A
b, hy =z :
| e
z [IRIN
hy 1 \
1
b, $
/-
)‘\\

b(kz)z)(Az— hyz)c

13

Replacing Circularity by Higher-Orderedness

pfold hy hy (g (1) [] ¢) ~> case g (Ab kz— h;
of (k,z) > k z

/ \\ nd
b; /
/ \\ N\,
- |
‘ hy o
hy i b/£ |
N .
b, hy =z :
| e
4 TN
hy \
S
b, $
/-
)‘\\

b(kz)z)(Az— hyz)c

13

Replacing Circularity by Higher-Orderedness

pfold hy hy (g (:) [] ¢) ~>case g (Abk z— h1 b(kz)z)(Az— hyz)c
of (k,z) > k z

hi
/|
b, / \ \ b, /$\Z
/ \\)‘"‘?‘\\
s h1 /" \\‘
\ S
tohp b2 /$\
VRN i
bn h2 V4 . ‘
V4 hy /,' \
S
b, $ /
/ =
/\\\

13

Replacing Circularity by Higher-Orderedness
pfold hy hy (g (:) [] ¢) ~>case g (Abk z— h1 b(kz)z)(Az— hyz)c

of (k,z) > k z
% \ /1N
by \ ” \)
/ \\
'/
‘ H
N Asse
a P
bn h2\Z /h‘l\ /:
\ by §)
z / -
X

13

Replacing Circularity by Higher-Orderedness

pfold hy hy (g (:) [] ¢) ~>case g (Abk z— h1 b(kz)z)(Az— hyz)c

of (k,z) > k z

/\\
/\\

13

Replacing Circularity by Higher-Orderedness

pfold hy hy (g (1) [] ¢) ~> case g (Ab kz— h;
of (k,z) > k z

/\\

/\\

,,/h\g\z
|

z

b(kz)z)(Az— hyz)c

13

No Problem with Selective Strictness

For a g of the problematic form considered earlier:

/\\

b;

/\\

14

Total Correctness [V., FLOPS'08]

Theorem 3
Without preconditions,

pfold hy hy (buildp g c)

case g (\bk z— hy b(kz)z)(Az— hyz)cof (k,z) > kz

15

Total Correctness [V., FLOPS'08]

Theorem 3
Without preconditions,

pfold hy hy (buildp g c)
z)

case g (\bk z— hy b(kz)z)(Az— hyz)cof (k,z) > kz

15

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

» Intellectually, | find the circular approach more fascinating.

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?
» Intellectually, | find the circular approach more fascinating.

» But semantically, the high-order approach is more robust.

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?
» Intellectually, | find the circular approach more fascinating.
» But semantically, the high-order approach is more robust.

» Performance measurements do not give a very clear picture.

16

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?
» Intellectually, | find the circular approach more fascinating.
» But semantically, the high-order approach is more robust.
» Performance measurements do not give a very clear picture.

» There are interesting interactions with rather low-level details
of the language implementation!

16

Tricky Sharing Issues — Circular Shortcut Fusion
pfold hy hy (buildp g c) ~ let (a,z) =g (Aba—hy baz)(hz)cina

17

Tricky Sharing Issues — Circular Shortcut Fusion
pfold hy hy (buildp g c) ~ let (a,z) =g (Aba—hy baz)(hz)cina

lf hy=Xbaz— H, ba(hz),

17

Tricky Sharing Issues — Circular Shortcut Fusion
pfold hy hy (buildp g c) ~ let (a,z) =g (Aba—hy baz)(hz)cina

If h =Abaz— hj ba(hz), then:

h fst
2N \/
b; H, h /\
/N H,
by h z - /\\
A R
1
bn h2 h ‘
| Mo
/1IN

17

Tricky Sharing Issues — Circular Shortcut Fusion
pfold hy hy (buildp g c) ~ let (a,z) =g (Aba—hy baz)(hz)cina

If hh =Abaz— hj ba(hz), then using full laziness:

fst snd

N/

17

Tricky Sharing Issues — Higher-Order Shortcut Fusion
pfold hy hy (buildp g c) ~~ case g (A\b k z— hy b (k z)z) (\z— hy z) ¢

of (k,z) > k z
If h =Abaz— h} ba(hz), then:
H; $
/ N\
/ / fst snd
by H, \h \/
N e
by, i h z \/ :
] = AN
h{l V4 bi $ h__)
RN /e
bn h2 h |
o N
z z NS
/1IN
bn $ h;,’ /I
VAN
A-

18

Tricky Sharing Issues — Higher-Order Shortcut Fusion

pfold hy hy (buildp g c) ~~ case g (A\b k z— hy b (k z)z) (\z— hy z) ¢
of (k,z) > k z

If h =Abaz— hj ba(hz), then using full laziness:

fst snd

18

What can be Learnt

» Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

19

What can be Learnt

» Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

» These lessons also inform new developments for more classical
shortcut fusion techniques.

19

What can be Learnt

» Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

» These lessons also inform new developments for more classical
shortcut fusion techniques.

» There is still an interesting design space to explore!

19

Recent (and Future?) Developments

» [Pardo et al., PEPM'09] study circular and higher-order
shortcut fusion in the presence of monads.

20

Recent (and Future?) Developments

» [Pardo et al., PEPM'09] study circular and higher-order
shortcut fusion in the presence of monads.

» From a semantics perspective, the circular flavour is again
more intriguing.

20

Recent (and Future?) Developments

» [Pardo et al., PEPM'09] study circular and higher-order
shortcut fusion in the presence of monads.

» From a semantics perspective, the circular flavour is again
more intriguing.

» The higher-order flavour is (again) more generally applicable.

20

Recent (and Future?) Developments

» [Pardo et al., PEPM'09] study circular and higher-order
shortcut fusion in the presence of monads.

» From a semantics perspective, the circular flavour is again
more intriguing.

» The higher-order flavour is (again) more generally applicable.

» It should be interesting to investigate the interplay with other
fusion work involving monads [V., MPC'08].

20

References |

[§ J.P. Fernandes, A. Pardo, and J. Saraiva.
A shortcut fusion rule for circular program calculation.
In Haskell Workshop, Proceedings, pages 95-106. ACM Press,
2007.

[@ A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.

@ P. Johann and J. Voigtlinder.
Free theorems in the presence of seq.

In Principles of Programming Languages, Proceedings, pages
99-110. ACM Press, 2004.

References |l

@ A. Pardo, J.P. Fernandes, and J. Saraiva.
Shortcut fusion rules for the derivation of circular and
higher-order monadic programs.
In Partial Evaluation and Program Manipulation, Proceedings,
pages 81-90. ACM Press, 2009.

@ S.L. Peyton Jones and D. Lester.
A modular fully-lazy lambda lifter in Haskell.
Software Practice and Experience, 21(5):479-506, 1991.

[§ J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.

References ||

@ J. Voigtlander.
Asymptotic improvement of computations over free monads.
In Mathematics of Program Construction, Proceedings,
volume 5133 of LNCS, pages 388-403. Springer-Verlag, 2008.

@ J. Voigtlinder.
Semantics and pragmatics of new shortcut fusion rules.
In Functional and Logic Programming, Proceedings, volume
4989 of LNCS, pages 163-179. Springer-Verlag, 2008.

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

23

	Classical Shortcut Fusion
	Circular Shortcut Fusion
	Correctness in Presence of Selective Strictness

	Higher-Order Shortcut Fusion
	A New Fusion Rule
	Correctness in Presence of Selective Strictness

	Circular vs. Higher-Order Shortcut Fusion
	Tricky Sharing Issues

	Conclusion
	References

