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Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTon=go 1
where go i = if i > n then []
else i:go (i+1)

sum [] =0
sum (x : xs) = x + sum xs

Problem: Expressions like
sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write upTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following fusion rule:

foldr h1 h2 (bUI/d g) ~ g h1 h2
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Producing intermediate results:

buildp :: (Va. (b —a—a) - a— c— (a,z)) — c— ([b],2)
buildp g c=g (1) [] ¢

The type of g forces it to be essentially of the following form:

Acon nil ¢ — /’\

con z

/\

b; con

/\
by

con

/\
b, nil

Formal justification: free theorems [Wadler, FPCA'89]



Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Consuming intermediate results:

pfold :: (b —a—z— a) — (z— a) — ([b],z) — a
pfold hy hy (bs,z) = foldr (Ab a— hy b a z) (hy z) bs

A concrete output (buildp g c) will be consumed as follows:

/\ /\\
bs

/\ /\\

/\ _ |
\ i ohy
; a
/\ bn hQ\Z
b ] |

z
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This is Where | got Interested

» Free-theorems-based transformations had been studied before.

» ...but been found to not be totally correct when considering
certain language features [Johann and V., POPL'04].

» Circular shortcut fusion depends on evaluation order, which is
precisely a “dangerous” corner for free theorems.

» So would it be possible to manufacture counterexamples?
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Theorem 1
If hp L # 1 and hy L 1L 1 #£ 1, then

pfold hy hy (buildp g c)

let (a,z) =g (Aba—h baz)(hhz)cina

Theorem 2
Without preconditions,

pfold hy hy (buildp g c)
=
let (a,z) =g (Aba—h baz)(hz)cina
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Replacing Circularity by Higher-Orderedness

pfold hy hy (g (1) [] ¢) ~> case g (Ab kz— h;
of (k,z) > k z
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No Problem with Selective Strictness

For a g of the problematic form considered earlier:

/\\

b;

/\\
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Total Correctness [V., FLOPS'08]

Theorem 3
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Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?
» Intellectually, | find the circular approach more fascinating.
» But semantically, the high-order approach is more robust.
» Performance measurements do not give a very clear picture.

» There are interesting interactions with rather low-level details
of the language implementation!
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Tricky Sharing Issues — Circular Shortcut Fusion
pfold hy hy (buildp g c) ~ let (a,z) =g (Aba—hy baz)(hz)cina

If hh =Abaz— hj ba(hz), then using full laziness:

fst  snd

N/
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What can be Learnt

» Both semantic and pragmatic considerations can motivate
studying new rules as well as new combinators.

» These lessons also inform new developments for more classical
shortcut fusion techniques.

» There is still an interesting design space to explore!
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Recent (and Future?) Developments

» [Pardo et al., PEPM'09] study circular and higher-order
shortcut fusion in the presence of monads.

» From a semantics perspective, the circular flavour is again
more intriguing.

» The higher-order flavour is (again) more generally applicable.

» It should be interesting to investigate the interplay with other
fusion work involving monads [V., MPC'08].
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