
Optimizing Signal Graphs for
Functional-Reactive Programs

Janis Voigtländer

University of Bonn

July 28th, 2015



Elm – An FRP Language (www.elm-lang.org)

For me, primarily a teaching tool, using it for:

I beginning programmers at high school level
I a declarative programming course at university
I projects/theses on language implementation ?

1 – 2/6

www.elm-lang.org


Elm – An FRP Language (www.elm-lang.org)

For me, primarily a teaching tool, using it for:

I beginning programmers at high school level

I a declarative programming course at university

I projects/theses on language implementation ?

1 – 3/6

www.elm-lang.org


Elm – An FRP Language (www.elm-lang.org)

For me, primarily a teaching tool, using it for:

I beginning programmers at high school level

I a declarative programming course at university

I projects/theses on language implementation ?

1 – 4/6

www.elm-lang.org


Elm – An FRP Language (www.elm-lang.org)

For me, primarily a teaching tool, using it for:

I beginning programmers at high school level

I a declarative programming course at university

I projects/theses on language implementation ?

1 – 5/6

www.elm-lang.org


Elm – An FRP Language (www.elm-lang.org)

For me, primarily a teaching tool, using it for:

I beginning programmers at high school level

I a declarative programming course at university

I projects/theses on language implementation ?

1 – 6/6

www.elm-lang.org


A Simple Elm Program

. . . and its Signal Graph

Signals . . .

behavior : Signal (Time, (Int, Int))
behavior = timestamp (Signal.sampleOn (Time.every second)

Mouse.position)

. . . and functions:

view (t, (x , y)) =
let

(cx , cy) = (100 ∗ cos t, 100 ∗ sin t)
(px , py) = (toFloat x − 100, 100− toFloat y)

in
collage 200 200 [move (cx , cy) (filled red (circle 10)),

traced defaultLine (path [(cx , cy),
(px , py)])]

main = Signal.map view behavior

2 – 7/10

input-every-1000

timestamp

map1

sampleOn

timestamp

input-Mouse.position

map1

output-main



A Simple Elm Program

. . . and its Signal Graph

Signals . . .

behavior : Signal (Time, (Int, Int))
behavior = timestamp (Signal.sampleOn (Time.every second)

Mouse.position)

. . . and functions:

view (t, (x , y)) =
let

(cx , cy) = (100 ∗ cos t, 100 ∗ sin t)
(px , py) = (toFloat x − 100, 100− toFloat y)

in
collage 200 200 [move (cx , cy) (filled red (circle 10)),

traced defaultLine (path [(cx , cy),
(px , py)])]

main = Signal.map view behavior

2 – 8/10

input-every-1000

timestamp

map1

sampleOn

timestamp

input-Mouse.position

map1

output-main



A Simple Elm Program

. . . and its Signal Graph

Signals . . .

behavior : Signal (Time, (Int, Int))
behavior = timestamp (Signal.sampleOn (Time.every second)

Mouse.position)

. . . and functions:

view (t, (x , y)) =
let

(cx , cy) = (100 ∗ cos t, 100 ∗ sin t)
(px , py) = (toFloat x − 100, 100− toFloat y)

in
collage 200 200 [move (cx , cy) (filled red (circle 10)),

traced defaultLine (path [(cx , cy),
(px , py)])]

main = Signal.map view behavior

2 – 9/10

input-every-1000

timestamp

map1

sampleOn

timestamp

input-Mouse.position

map1

output-main



A Simple Elm Program . . . and its Signal Graph

Signals . . .

behavior : Signal (Time, (Int, Int))
behavior = timestamp (Signal.sampleOn (Time.every second)

Mouse.position)

. . . and functions:

view (t, (x , y)) =
let

(cx , cy) = (100 ∗ cos t, 100 ∗ sin t)
(px , py) = (toFloat x − 100, 100− toFloat y)

in
collage 200 200 [move (cx , cy) (filled red (circle 10)),

traced defaultLine (path [(cx , cy),
(px , py)])]

main = Signal.map view behavior

2 – 10/10

input-every-1000

timestamp

map1

sampleOn

timestamp

input-Mouse.position

map1

output-main



Optimizing Signal Graphs

Why ?

I communication flow
structure / overhead

I avalanches of ‘no-update’s

How ?

I as a start, collapse chains
of nodes

I by some kind of syntactic
fusion ?

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

3 – 11/14



Optimizing Signal Graphs

Why ?

I communication flow
structure / overhead

I avalanches of ‘no-update’s

How ?

I as a start, collapse chains
of nodes

I by some kind of syntactic
fusion ?

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

3 – 12/14



Optimizing Signal Graphs

Why ?

I communication flow
structure / overhead

I avalanches of ‘no-update’s

How ?

I as a start, collapse chains
of nodes

I by some kind of syntactic
fusion ?

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

3 – 13/14



Optimizing Signal Graphs

Why ?

I communication flow
structure / overhead

I avalanches of ‘no-update’s

How ?

I as a start, collapse chains
of nodes

I by some kind of syntactic
fusion ?

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

3 – 14/14



Fusion of Signal Primitives

A simple case:

Signal.map f (Signal.map g signal)
 

Signal.map (f << g) signal

Further candidates:

I Time.timestamp

I Signal.dropRepeats

I Signal.filter

I Signal.filterMap

I Signal.foldp

4 – 15/16



Fusion of Signal Primitives

A simple case:

Signal.map f (Signal.map g signal)
 

Signal.map (f << g) signal

Further candidates:

I Time.timestamp

I Signal.dropRepeats

I Signal.filter

I Signal.filterMap

I Signal.foldp
4 – 16/16



Problems with Syntactic Fusion

A not so simple case:

Signal.map f (Signal.foldp g k signal)
 
???

Actually detecting fusable chains:

signal1 = Signal.map g signal

signal2 = Signal.map f signal1 -- inline signal1 ?

signal3 = do-whatever-with signal1 -- what now ?

5 – 17/19



Problems with Syntactic Fusion

A not so simple case:

Signal.map f (Signal.foldp g k signal)
 
???

Actually detecting fusable chains:

signal1 = Signal.map g signal

signal2 = Signal.map f signal1 -- inline signal1 ?

signal3 = do-whatever-with signal1 -- what now ?

5 – 18/19



Problems with Syntactic Fusion

A not so simple case:

Signal.map f (Signal.foldp g k signal)
 
???

Actually detecting fusable chains:

signal1 = Signal.map g signal

signal2 = Signal.map f signal1 -- inline signal1 ?

signal3 = do-whatever-with signal1 -- what now ?

5 – 19/19



Phase Separation

Fact: Signal graphs in Elm are static (once created).

The types make it so!

Conceptually, 3 phases in executing an Elm program:

1. compiling Elm to JavaScript;

2. running some JavaScript, setting up the signal
graph of nodes, which embed further JavaScript;

3. sending events to the signal graph, running the
JavaScript embedded in nodes.

6 – 20/22



Phase Separation

Fact: Signal graphs in Elm are static (once created).

The types make it so!

Conceptually, 3 phases in executing an Elm program:

1. compiling Elm to JavaScript;

2. running some JavaScript, setting up the signal
graph of nodes, which embed further JavaScript;

3. sending events to the signal graph, running the
JavaScript embedded in nodes.

6 – 21/22



Phase Separation

Fact: Signal graphs in Elm are static (once created).

The types make it so!

Conceptually, 3 phases in executing an Elm program:

1. compiling Elm to JavaScript;

2. running some JavaScript, setting up the signal
graph of nodes, which embed further JavaScript;

3. sending events to the signal graph, running the
JavaScript embedded in nodes.

6 – 22/22



Phase Separation

Signal graph construction: ‘red’ code.
Pure functions in nodes: ‘green’ code.

behavior = timestamp (Signal.sampleOn (Time.every second)
Mouse.position)

view (t, (x , y)) =
let

(cx , cy) = (100 ∗ cos t, 100 ∗ sin t)
(px , py) = (toFloat x − 100, 100− toFloat y)

in
collage 200 200 [move (cx , cy) (filled red (circle 10)),

traced defaultLine (path [(cx , cy),
(px , py)])]

main = Signal.map view behavior

And there can be some ‘yellow’ code as well.

7 – 23/24



Phase Separation

Signal graph construction: ‘red’ code.
Pure functions in nodes: ‘green’ code.

behavior = timestamp (Signal.sampleOn (Time.every second)
Mouse.position)

view (t, (x , y)) =
let

(cx , cy) = (100 ∗ cos t, 100 ∗ sin t)
(px , py) = (toFloat x − 100, 100− toFloat y)

in
collage 200 200 [move (cx , cy) (filled red (circle 10)),

traced defaultLine (path [(cx , cy),
(px , py)])]

main = Signal.map view behavior

And there can be some ‘yellow’ code as well.
7 – 24/24



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes,

I but that do short-circuit when appropriate
(and use iteration instead of function calls).

Sounds easy. Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 25/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes,

I but that do short-circuit when appropriate
(and use iteration instead of function calls).

Sounds easy. Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 26/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes

,
I but that do short-circuit when appropriate

(and use iteration instead of function calls).

Sounds easy. Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 27/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes,

I but that do short-circuit when appropriate
(and use iteration instead of function calls).

Sounds easy. Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 28/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes,

I but that do short-circuit when appropriate
(and use iteration instead of function calls).

Sounds easy. Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 29/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes,

I but that do short-circuit when appropriate
(and use iteration instead of function calls).

Sounds easy.

Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 30/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



Thus Motivated Optimization Strategy

1. Wait until all ‘red’ (and maybe some ‘yellow’)
JavaScript code has run.

2. Traverse and shrink the signal graph, potentially
moving around ‘green’ JavaScript function
objects (which might reference ‘yellow’ ones).

I Create ‘fat nodes’ that do the work of a
whole chain of nodes,

I but that do short-circuit when appropriate
(and use iteration instead of function calls).

Sounds easy. Well, yes, but as always the devil is in
the details. For example, it turns out JavaScript is
an imperative language with mutable state. . .

8 – 31/31

from:

f1/v1 f2/v2 f3/v3 f4/v4

to:

f1 f2 f3 f4
v1 v2 v3 v4

9 – 7/7



So, Does it Work?

– Yes!

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

 

1

7

9

10

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

41

77

78

81

42

45

89

4648

50

63

64

65

69

76

52

66

54

56

57

60

62

55

61

70

Open:

I evaluate impact on
performance
(beyond anecdotal)

I impact on
debugging,
hot-swapping ?

I deeper fusion (of
‘green’ functions) ?

I other optimizations,
. . .

9 – 32/37



So, Does it Work? – Yes!

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

 

1

7

9

10

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

41

77

78

81

42

45

89

4648

50

63

64

65

69

76

52

66

54

56

57

60

62

55

61

70

Open:

I evaluate impact on
performance
(beyond anecdotal)

I impact on
debugging,
hot-swapping ?

I deeper fusion (of
‘green’ functions) ?

I other optimizations,
. . .

9 – 33/37



So, Does it Work? – Yes!

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

 

1

7

9

10

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

41

77

78

81

42

45

89

4648

50

63

64

65

69

76

52

66

54

56

57

60

62

55

61

70

Open:

I evaluate impact on
performance
(beyond anecdotal)

I impact on
debugging,
hot-swapping ?

I deeper fusion (of
‘green’ functions) ?

I other optimizations,
. . .

9 – 34/37



So, Does it Work? – Yes!

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

 

1

7

9

10

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

41

77

78

81

42

45

89

4648

50

63

64

65

69

76

52

66

54

56

57

60

62

55

61

70

Open:

I evaluate impact on
performance
(beyond anecdotal)

I impact on
debugging,
hot-swapping ?

I deeper fusion (of
‘green’ functions) ?

I other optimizations,
. . .

9 – 35/37



So, Does it Work? – Yes!

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

 

1

7

9

10

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

41

77

78

81

42

45

89

4648

50

63

64

65

69

76

52

66

54

56

57

60

62

55

61

70

Open:

I evaluate impact on
performance
(beyond anecdotal)

I impact on
debugging,
hot-swapping ?

I deeper fusion (of
‘green’ functions) ?

I other optimizations,
. . .

9 – 36/37



So, Does it Work? – Yes!

1

7

9

10

11

16

17

18

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

40

41

77

78

79

80

81

42

43

44

45

89

4648

50

63

64

65

69

74

75

76

52

66

54

56

57

58

59

60

62

55

61

70

 

1

7

9

10

19

68

71

72

73

82

83

84

85

90

86

117

87

88

2

6

4

8

30

67

35

36

39

41

77

78

81

42

45

89

4648

50

63

64

65

69

76

52

66

54

56

57

60

62

55

61

70

Open:

I evaluate impact on
performance
(beyond anecdotal)

I impact on
debugging,
hot-swapping ?

I deeper fusion (of
‘green’ functions) ?

I other optimizations,
. . .

9 – 37/37


