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Bidirectional Transformations

Some further relevant aspects:

I What artefacts need to be specified?
I both to and from
I only one of them, the other derived
I a more abstract artefact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?
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Bidirectionalization “by Hand”

A simple example:

get :: [α ]→ [α ]
get [ ] = [ ]
get [x ] = [ ]
get (x : y : zs) = y : (get zs)

One possible backwards transformation:

put [ ] [ ] = [ ]
put [ ] [x ] = [x ]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)
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Programming Language Approaches

There has been, and is ongoing, great work in the
“lenses” PL/DSLs tradition [Foster et al., ACM
TOPLAS’07, . . . ]. Not covered today.

We will mention/look at:

I syntactic program transformation

I semantic/type-based transformation

I benefits of higher-order types and abstraction

I search-based program synthesis (if time permits,
otherwise see PEPM’12 short paper)
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A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!
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A Principled Approach: Constant-Complement

Guarantees “very-well-behavedness”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior
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Automatic Bidirectionalization by Example

Let:

get :: [α ]→ [α ]
get [ ] = [ ]
get [x ] = [ ]
get (x : y : zs) = y : (get zs)

A syntactically derived complement function:

res [ ] = C1

res [x ] = C2 x
res (x : y : zs) = C3 x (res zs)

Syntactic pairing:

paired [ ] = ([ ] ,C1)
paired [x ] = ([ ] ,C2 x)
paired (x : y : zs) = (y : v ,C3 x c)

where (v , c) = paired zs

Syntactic inversion:

inv ([ ] ,C1) = [ ]
inv ([ ] ,C2 x) = [x ]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [ ] [ ] = [ ]
put [ ] [x ] = [x ]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10
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Automatic Bidirectionalization

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
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Automatic Bidirectionalization

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
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Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet, . . . .

Examples:

† “Bidirectionalization for free!”
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‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
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flatten
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Analyzing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyze it without access to its
source code?

Idea: How about applying get to some input?

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!
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Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

t
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Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP’07]:

I depends on syntactic restraints

I allows (ad-hoc) some shape-changing updates

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I essential role: polymorphic function types

I major problem: rejects shape-changing updates

[V. et al., ICFP’10]:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either
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