Programming Language Approaches
to
Bidirectional Transformation

Janis Voigtlander

University of Bonn

LDTA'12

Bidirectional Transformations (BX)

to
/\

v
from

Bidirectional Transformations (BX)

to
/—\

V
from

concrete syntax <~ abstract syntax

Bidirectional Transformations (BX)

to
/—\

V
from

database source = materialized view

Bidirectional Transformations (BX)

to
/—\

V
from

document representation < screen visualization

Bidirectional Transformations (BX)

to
/\

V
from

software model & code

Bidirectional Transformations (BX)

to
/—\

V
from

abstract datatype < actual implementation

Bidirectional Transformations (BX)

to
/—\

V
from

program input & program output

Bidirectional Transformations (BX)

to
/\
V
from
concrete syntax <~ abstract syntax
database source & materialized view
document representation < screen visualization
software model & code
abstract datatype < actual implementation
program input & program output

Bidirectional Transformations

Bidirectional Transformations
=3

Bidirectional Transformations

Bidirectional Transformations

i
26

from

(S
g

Bidirectional Transformations
OIS
a from ”
* to

Bidirectional Transformations
OIS
a from ”
(=3

Bidirectional Transformations

w to
“ unless bijective, typically

additional information

a from ” needed /useful
(3

Bidirectional Transformations

unless bijective, typically
additional information
needed /useful:

» about connections
between A and B
(objects)

Bidirectional Transformations

unless bijective, typically
A additional information
needed /useful:

» about connections
between A and B
(objects)

» about the updates
on either side

Bidirectional Transformations

unless bijective, typically
A additional information
needed /useful:

» about connections
between A and B
(objects)

» about the updates
on either side

Bidirectional Transformations

For example:
to

Bidirectional Transformations

Bidirectional Transformations

to

or

Bidirectional Transformations

to

or or

Bidirectional Transformations

A closer look at representing -a; _.-b; connections.

For example:
to

Bidirectional Transformations

to

or or

Why is it not enough to look just at the data?

Because of:

Bidirectional Transformations

Some further relevant aspects:

» What artefacts need to be specified?
» both to and from
» only one of them, the other derived
» a more abstract artefact, from which both derivable

Bidirectional Transformations

Some further relevant aspects:

» What artefacts need to be specified?

» both to and from
» only one of them, the other derived
» a more abstract artefact, from which both derivable

» How are they specified, manipulated, analyzed?

Bidirectional Transformations

Some further relevant aspects:

» What artefacts need to be specified?

» both to and from
» only one of them, the other derived
» a more abstract artefact, from which both derivable

» How are they specified, manipulated, analyzed?

» What properties are they expected to have?

Bidirectional Transformations

Some further relevant aspects:

» What artefacts need to be specified?

» both to and from
» only one of them, the other derived
» a more abstract artefact, from which both derivable

» How are they specified, manipulated, analyzed?
» What properties are they expected to have?

» What influence does a user, modeller,
programmer have?

Bidirectional Transformations

Some further relevant aspects:

» What artefacts need to be specified?

» both to and from
» only one of them, the other derived
» a more abstract artefact, from which both derivable

» How are they specified, manipulated, analyzed?
» What properties are they expected to have?

» What influence does a user, modeller,

mer have?
programmer have answers/approaches

vary with field

Bidirectional Transformations
A specific (asymmetric) setting:

source view

get i i

v

Bidirectional Transformations
A specific (asymmetric) setting:

source view

i j get

:

update

>

Bidirectional Transformations
A specific (asymmetric) setting:

source view

i j get
A‘ e

:

update

>

Bidirectional Transformations
A specific (asymmetric) setting:

source view

i j get
[N\

:

update

>

Bidirectional Transformations
A specific (asymmetric) setting:

source

i j get

GetPut law

v

>

view

Bidirectional Transformations
A specific (asymmetric) setting:
source view

get

v

>

put

=
A

GetPut law

Bidirectional Transformations

A specific (asymmetric) setting:

source view
i j get R i i
update

Y/ —\

PutGet law

Bidirectional Transformations

A specific (asymmetric) setting:

source view
i j get R ij
update
A‘ = &
\/
get

PutGet law

Bidirectional Transformations
A specific (asymmetric) setting:

source

view

>

update

Bidirectionalization “by Hand”

A simple example:

get : [a] = [o]

get || = (]

get [x] =[]

get (x:y:zs) =y :(get zs)

Bidirectionalization “by Hand”

A simple example:

get

get : [a] = [o]

get || = (]

get [x] =[]

get (x:y:zs) =y :(get zs)

Bidirectionalization “by Hand”

A simple example:

get
get : [a] = [a]
get [] = (]
get [x] =

get (x:y:zs) =y :(get zs)

One possible backwards transformation:

put] [] =1
put [] [x] = [x]
put (y : V) (x:y:zs)=x:y":(put v/ zs)

Bidirectionalization “by Hand”

A simple example:

get

get : [a] = [o]

get || = (]

get [x] =[]

get (x:y:zs) =y :(get zs)

One possible backwards transformation:

put] [] =1

put [] [x] = [x] not total!
put (y':v) (x:y:zs)=x:y :(put v/ zs)

Programming Language Approaches

There has been, and is ongoing, great work in the
“lenses” PL/DSLs tradition [Foster et al., ACM
TOPLAS'07, ...]. Not covered today.

Programming Language Approaches

There has been, and is ongoing, great work in the
“lenses” PL/DSLs tradition [Foster et al., ACM
TOPLAS'07, ...]. Not covered today.
We will mention /look at:

» syntactic program transformation

» semantic/type-based transformation

» benefits of higher-order types and abstraction

» search-based program synthesis (if time permits,
otherwise see PEPM'12 short paper)

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get 1S =V

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get 1S =V
define a C and

res::S—>C

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :S—=V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :S—=V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective and has an inverse inv :: (V,C) — S.

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :S—=V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective and has an inverse inv :: (V,C) — S.

Then:
putzV—-5—S5

put v/ s = inv (V/,res s)

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get 1S =V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective and has an inverse inv :: (V,C) — S.

has to be effective!
Then:
put :V—=-5—=95

put v/ s = inv (V/,res s)

A Principled Approach: Constant-Complement
Guarantees ‘“very-well-behavedness”:
» put (get s) s=s
» get (put v/ s) =V

» put v/ (put v/ s) =put v’ s

A Principled Approach: Constant-Complement
Guarantees ‘“very-well-behavedness”:
» put (get s) s=s
» get (put v/ s) =V
» put v/ (put v/ s) =put v’ s
Example:

get 1 Nat — Nat
get n=n'div’ 2

A Principled Approach: Constant-Complement
Guarantees ‘“very-well-behavedness”:
» put (get s) s=s
» get (put v/ s) =V
» put v/ (put v/ s) =put v’ s
Example:

get 1 Nat — Nat res 1 Nat — Natp
get n=n'div’ 2 res n=n ‘mod 2

A Principled Approach: Constant-Complement
Guarantees ‘“very-well-behavedness”:
» put (get s) s=s
» get (put v/ s) =V
» put v/ (put v/ s) =put v’ s
Example:

get 1 Nat — Nat res 1 Nat — Natp
get n=n'div’ 2 res n=n ‘mod 2

inv :: (Nat, Naty) — Nat
inv (V,c) =2V +¢

A Principled Approach: Constant-Complement

Example:
get :: Nat — Nat res :: Nat — Nat,

get n=n'div’ 2 res n=n ‘mod’ 2

inv :: (Nat, Naty) — Nat
inv (V,c)=2%Vv +¢

A Principled Approach: Constant-Complement

Example:
get :: Nat — Nat res :: Nat — Nat,

get n=n'div’ 2 res n=n ‘mod’ 2

inv :: (Nat, Naty) — Nat
inv (V,c)=2%Vv +¢

Then:
put :: Nat — Nat — Nat
put v/ s = inv (V/,res s)

A Principled Approach: Constant-Complement

Example:

get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2

inv :: (Nat, Naty) — Nat
inv (V,c)=2%Vv +¢

Then:
put :: Nat — Nat — Nat
put v/ s = inv (V/,res s)
=2%Vv + s 'mod' 2

A Principled Approach: Constant-Complement

Example:
get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2
inv :: (Nat, Naty) — Nat Other choices
inv (V,c) = 25/ + c possible, and
’ give different
behavior
Then:

put :: Nat — Nat — Nat
put v/ s = inv (V/,res s)
=2x%Vv 45 ‘mod' 2

Automatic Bidirectionalization by Example

Let:
get : [a] = [a]
get [] = (]
get [x] =

get (x:y:zs) =y :(get zs)

get

10

Automatic Bidirectionalization by Example

Let:
get : [a] = [a]
get [] = (]
get [x] =

get (x:y:zs) =y :(get zs)

A syntactically derived complement function:
res [] =C

res [x] = Cy x
res (x:y:zs) = C3 x (res zs)

10

Automatic Bidirectionalization by Example

A syntactically derived complement function:
res [] =G
res [x] =Cox
res (x:y:zs) = C3 x (res zs)

Syntactic pairing:
paired [] =l .G)
paired [x] =(] ,Gx)
paired (x:y:zs) = (y:v,C3 x c)
where (v, ¢) = paired zs

10

Automatic Bidirectionalization by Example

Syntactic pairing:
paired [] =1)
paired [x] =([] ,Cx)
paired (x:y:zs)=(y:v,C3xc)
where (v, c) = paired zs

Syntactic inversion:
inv ([] ,G) =[]
inv ([] ,Cx) =I[x]
inv(y:v,C3xc)=x:y:zs
where zs = inv (v, ¢)

10

Automatic Bidirectionalization by Example

Syntactic inversion:
inv ([] ,G) =[]
inv ([] ,Cox) =][x]
inv(y:v,C3xc)=x:y:zs
where zs = inv (v, ¢)
Then,

put v/ s = inv (V/,res s)

10

Automatic Bidirectionalization by Example

Syntactic inversion:
inv ([] ,G) =[]
inv ([] ,Cox) =][x]
inv(y:v,C3xc)=x:y:zs
where zs = inv (v, ¢)
Then,

put v/ s = inv (V/,res s)

corresponds to (the earlier seen):

put [] [] =1
put] [x] = [x]
put (y:v) (x:y:zs)=x:y" :(put v/ zs)

10

Automatic Bidirectionalization

source view
i j get - i j
update

[N A/

Syntactic Bidirectionalization

[Matsuda et al., ICFP'07]

11

Automatic Bidirectionalization

source view
i j get R i i
update

Semantic Bidirectionalization

[V., POPL'09]

11

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet,

f “Bidirectionalization for free!”

12

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

abC” tall > “bC”

f “Bidirectionalization for free!”

12

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

abC” tall > “bC”

update

HdeH

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy

GetPut, PutGet,

Examples:
HabC” tall > “bC”
update
“ade” < bff tail “de”

f “Bidirectionalization for free!”

12

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

flatten

> “abac’l

f “Bidirectionalization for free!”

12

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

flatten

> “abac’l
lal lb1 lal ‘C,

update

Ha bXC”

f “Bidirectionalization for free!” 12

Semantic Bidirectionalization

Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet,

Examples:
flatten Cu "
> “abac
lal lb’ lal lcl
update
i 1 1 LA 1 < bff flatten abXC
a''b’''x'‘c

f “Bidirectionalization for free!” 12

Analyzing Specific Instances

Assume we are given some
get : [a] = [a]

How can we, or bff, analyze it without access to its
source code?

13

Analyzing Specific Instances
Assume we are given some
get : [a] = [a]

How can we, or bff, analyze it without access to its
source code?

ldea: How about applying get to some input?

13

Analyzing Specific Instances

Assume we are given some
get : [a] = [a]

How can we, or bff, analyze it without access to its
source code?

ldea: How about applying get to some input?

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = 4 [1..(min 5 n)] if get = take 5

\

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:
tail

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:
tail

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:

tail init

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:
tail

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:

tail get

=[]

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:

tail get

=]

13

Analyzing Specific Instances

Like:)
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:
tail

Then transfer the gained insights to arbitrary lists!

Semantic Bidirectionalization by Example

tailoflatten “ "

lbl la1 ICI lal

update

bff (tailoflatten)

14

Semantic Bidirectionalization by Example

lbl la1 ICI lal

bff (tailoflatten)

“xca”

14

Semantic Bidirectionalization by Example

“xca”

14

Semantic Bidirectionalization by Example

1 2 3 4
? 1_>lb1
_’2—>‘a'
ey |37
4 —‘a

“xca”

14

Semantic Bidirectionalization by Example

KR ___tailoflatten | [y34get

12 34
1 1 % [b’
|27
lby lav ‘C, ta! 3 — ‘C'
4 — '3’

“xca”

14

Semantic Bidirectionalization by Example

tailoflatten

- [2,3,4]2°0 ¢

1—"'D
2—1a
3—'c
4% lal

Z%IXY
3—'c
4 — '3’

“xca”

14

Semantic Bidirectionalization by Example

tailoflatten

1—'b
2—1a
3—'c
4% lal

|

1—"'D
2%[)(1
3—'c
4 — '3’

2%(X1
3—'c
4 — '3’

> [2,3,4]

14

Semantic Bidirectionalization by Example

m tailoflatten . [2 3 4]

1 N lbl
2—"a
lbr laa ‘C’ lal 3 — :C:
4—"a

|
1_>lb1
2%1X1
3—'c
%11
/4—>'a' 4 d \

2%()(7

lbl LXY IC’ lal

14

Semantic Bidirectionalization by Example

lbl la1 ICI lal

‘b o'y Pff (tailoflatten)

“xca”

14

Semantic Bidirectionalization by Example

m tailoflatten . [2 3 4]

1 N lbl
2—"a
lbr laa ‘C’ lal 3 — :C:
4—"a

|
1_>lb1
2%1X1
3—'c
%11
/4—>'a' 4 d \

2%()(7

lbl LXY IC’ lal

14

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:
» depends on syntactic restraints
» allows (ad-hoc) some shape-changing updates

15

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:
» depends on syntactic restraints
» allows (ad-hoc) some shape-changing updates

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» essential role: polymorphic function types
» major problem: rejects shape-changing updates

15

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:
» depends on syntactic restraints
» allows (ad-hoc) some shape-changing updates

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» essential role: polymorphic function types
» major problem: rejects shape-changing updates

[V. et al., ICFP'10]:
» synthesis of the two techniques
» inherits limitations in program coverage from both
» strictly better in terms of updatability than either

15

References |

[§ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

@ J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

[S. Katayama.
Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected
Papers, pages 111-126. Intellect, 2007.

16

References |l

[d E. Kitzelmann and U. Schmid.
Inductive synthesis of functional programs: An explanation
based generalization approach.
Journal of Machine Learning Research, 7:429-454, 2006.

@ K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

@ J. Voigtlander, Z. Hu, K. Matsuda, and M. Wang.
Combining syntactic and semantic bidirectionalization.
In International Conference on Functional Programming,
Proceedings, pages 181-192. ACM Press, 2010.

References Il

@ J. Voigtlander.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 2009.

18

