
Programming Language Approaches
to

Bidirectional Transformation

Janis Voigtländer

University of Bonn

LDTA’12

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B
concrete syntax ⇔ abstract syntax
database source ⇔ materialized view

document representation ⇔ screen visualization
software model ⇔ code

abstract datatype ⇔ actual implementation
program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B

concrete syntax ⇔ abstract syntax

database source ⇔ materialized view
document representation ⇔ screen visualization

software model ⇔ code
abstract datatype ⇔ actual implementation

program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B
concrete syntax ⇔ abstract syntax

database source ⇔ materialized view

document representation ⇔ screen visualization
software model ⇔ code

abstract datatype ⇔ actual implementation
program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B
concrete syntax ⇔ abstract syntax
database source ⇔ materialized view

document representation ⇔ screen visualization

software model ⇔ code
abstract datatype ⇔ actual implementation

program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B
concrete syntax ⇔ abstract syntax
database source ⇔ materialized view

document representation ⇔ screen visualization

software model ⇔ code

abstract datatype ⇔ actual implementation
program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B
concrete syntax ⇔ abstract syntax
database source ⇔ materialized view

document representation ⇔ screen visualization
software model ⇔ code

abstract datatype ⇔ actual implementation

program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B
concrete syntax ⇔ abstract syntax
database source ⇔ materialized view

document representation ⇔ screen visualization
software model ⇔ code

abstract datatype ⇔ actual implementation

program input ⇔ program output

1

Bidirectional Transformations (BX)

A B

to

from

A ⇔ B

concrete syntax ⇔ abstract syntax
database source ⇔ materialized view

document representation ⇔ screen visualization
software model ⇔ code

abstract datatype ⇔ actual implementation
program input ⇔ program output

1

Bidirectional Transformations

a1 b1
to

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2

unless bijective, typically
additional information
needed/useful

:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2a2
from

a3 b3
to

2

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

a3

∆

b3
to

∆

2

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

a1 b1
to

b2

∆

a2
from

a3

∆

b3
to

∆

∆

∆

2

unless bijective, typically
additional information
needed/useful:

I about connections
between A and B
(objects)

I about the updates
on either side

Bidirectional Transformations

A closer look at representing ai bi connections.

For example:

x
y
z
u
v

y
z
u
v

to

or

x
y
z
u
v

y
z
u
v

to

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

3

Bidirectional Transformations

A closer look at representing ai bi connections.

For example:

x
y
z
u
v

y
z
u
v

to

or

x
y
z
u
v

y
z
u
v

to

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

3

Bidirectional Transformations

A closer look at representing ai bi connections.

For example:

x
y
z
u
v

y
z
u
v

to

or

x
y
z
u
v

y
z
u
v

to

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

3

Bidirectional Transformations

A closer look at representing ai bi connections.

For example:

x
y
z
u
v

y
z
u
v

to

or

x
y
z
u
v

y
z
u
v

to

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

3

Bidirectional Transformations

A closer look at representing ai bi connections.

For example:

x
y
z
u
v

y
z
u
v

to

or

x
y
z
u
v

y
z
u
v

to

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

3

Bidirectional Transformations

A closer look at representing ai bi connections.

For example:

x
y
z
u
v

y
z
u
v

to

or

x
y
z
u
v

y
z
u
v

to

x

or

x
y
z
u
v

y
z
u
v

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Because of: x
x
x
x
x

x
x
x
x

3

Bidirectional Transformations

Some further relevant aspects:

I What artefacts need to be specified?
I both to and from
I only one of them, the other derived
I a more abstract artefact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

4

answers/approaches
vary with field

Bidirectional Transformations

Some further relevant aspects:

I What artefacts need to be specified?
I both to and from
I only one of them, the other derived
I a more abstract artefact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

4

answers/approaches
vary with field

Bidirectional Transformations

Some further relevant aspects:

I What artefacts need to be specified?
I both to and from
I only one of them, the other derived
I a more abstract artefact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

4

answers/approaches
vary with field

Bidirectional Transformations

Some further relevant aspects:

I What artefacts need to be specified?
I both to and from
I only one of them, the other derived
I a more abstract artefact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

4

answers/approaches
vary with field

Bidirectional Transformations

Some further relevant aspects:

I What artefacts need to be specified?
I both to and from
I only one of them, the other derived
I a more abstract artefact, from which both derivable

I How are they specified, manipulated, analyzed?

I What properties are they expected to have?

I What influence does a user, modeller,
programmer have?

4

answers/approaches
vary with field

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

update

5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

put

update

5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

put

update

5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s v

get

=

GetPut law
5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s v

get

put

==

GetPut law
5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

put

update

PutGet law
5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

put

update

get

PutGet law
5

Bidirectional Transformations

A specific (asymmetric) setting:

source view

s v

s ′ v ′

get

put

update

5

Bidirectionalization “by Hand”

A simple example:

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

One possible backwards transformation:

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

6

x
y
z
u
v

y
u

get

not total!

Bidirectionalization “by Hand”

A simple example:

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

One possible backwards transformation:

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

6

x
y
z
u
v

y
u

get

not total!

Bidirectionalization “by Hand”

A simple example:

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

One possible backwards transformation:

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

6

x
y
z
u
v

y
u

get

not total!

Bidirectionalization “by Hand”

A simple example:

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

One possible backwards transformation:

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

6

x
y
z
u
v

y
u

get

not total!

Programming Language Approaches

There has been, and is ongoing, great work in the
“lenses” PL/DSLs tradition [Foster et al., ACM
TOPLAS’07, . . .]. Not covered today.

We will mention/look at:

I syntactic program transformation

I semantic/type-based transformation

I benefits of higher-order types and abstraction

I search-based program synthesis (if time permits,
otherwise see PEPM’12 short paper)

7

Programming Language Approaches

There has been, and is ongoing, great work in the
“lenses” PL/DSLs tradition [Foster et al., ACM
TOPLAS’07, . . .]. Not covered today.

We will mention/look at:

I syntactic program transformation

I semantic/type-based transformation

I benefits of higher-order types and abstraction

I search-based program synthesis (if time permits,
otherwise see PEPM’12 short paper)

7

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C)→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C)→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective

and has an inverse inv :: (V ,C)→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C)→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C)→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!

A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C)→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

8

has to be effective!

A Principled Approach: Constant-Complement

Guarantees “very-well-behavedness”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Guarantees “very-well-behavedness”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

get :: Nat→ Nat
get n = n ‘div‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Guarantees “very-well-behavedness”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Guarantees “very-well-behavedness”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

A Principled Approach: Constant-Complement

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement (function):

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

9

other choices
possible, and
give different
behavior

Automatic Bidirectionalization by Example

Let:

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

A syntactically derived complement function:

res [] = C1

res [x] = C2 x
res (x : y : zs) = C3 x (res zs)

Syntactic pairing:

paired [] = ([] ,C1)
paired [x] = ([] ,C2 x)
paired (x : y : zs) = (y : v ,C3 x c)

where (v , c) = paired zs

Syntactic inversion:

inv ([] ,C1) = []
inv ([] ,C2 x) = [x]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10

x
y
z
u
v

y
u

get

Automatic Bidirectionalization by Example

Let:

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

A syntactically derived complement function:

res [] = C1

res [x] = C2 x
res (x : y : zs) = C3 x (res zs)

Syntactic pairing:

paired [] = ([] ,C1)
paired [x] = ([] ,C2 x)
paired (x : y : zs) = (y : v ,C3 x c)

where (v , c) = paired zs

Syntactic inversion:

inv ([] ,C1) = []
inv ([] ,C2 x) = [x]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10

x
y
z
u
v

y
u

get

x
z
v

res

Automatic Bidirectionalization by Example

A syntactically derived complement function:

res [] = C1

res [x] = C2 x
res (x : y : zs) = C3 x (res zs)

Syntactic pairing:

paired [] = ([] ,C1)
paired [x] = ([] ,C2 x)
paired (x : y : zs) = (y : v ,C3 x c)

where (v , c) = paired zs

Syntactic inversion:

inv ([] ,C1) = []
inv ([] ,C2 x) = [x]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10

x
y
z
u
v

y
u

get

Automatic Bidirectionalization by Example

Syntactic pairing:

paired [] = ([] ,C1)
paired [x] = ([] ,C2 x)
paired (x : y : zs) = (y : v ,C3 x c)

where (v , c) = paired zs

Syntactic inversion:

inv ([] ,C1) = []
inv ([] ,C2 x) = [x]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10

x
y
z
u
v

y
u

get

Automatic Bidirectionalization by Example

Syntactic inversion:

inv ([] ,C1) = []
inv ([] ,C2 x) = [x]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10

x
y
z
u
v

y
u

get

Automatic Bidirectionalization by Example

Syntactic inversion:

inv ([] ,C1) = []
inv ([] ,C2 x) = [x]
inv (y : v ,C3 x c) = x : y : zs

where zs = inv (v , c)

Then,
put v ′ s = inv (v ′, res s)

corresponds to (the earlier seen):

put [] [] = []
put [] [x] = [x]
put (y ′ : v ′) (x : y : zs) = x : y ′ : (put v ′ zs)

10

x
y
z
u
v

y
u

get

Automatic Bidirectionalization

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
11

Automatic Bidirectionalization

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
11

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

† “Bidirectionalization for free!”
12

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

† “Bidirectionalization for free!”
12

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

update

† “Bidirectionalization for free!”
12

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

bff tail

update

† “Bidirectionalization for free!”
12

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

† “Bidirectionalization for free!”
12

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

† “Bidirectionalization for free!”
12

Semantic Bidirectionalization

Aim: Write higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

bff flatten

update

† “Bidirectionalization for free!”
12

Analyzing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyze it without access to its
source code?

Idea: How about applying get to some input?

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyze it without access to its
source code?

Idea: How about applying get to some input?

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyze it without access to its
source code?

Idea: How about applying get to some input?

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!

13

Analyzing Specific Instances

Like:

get [1..n] =


[2..n] if get = tail

[n..1] if get = reverse

[1..(min 5 n)] if get = take 5
...

Indeed, this gives us traceability for free:

1
2
3
4
5

2
3
4
5

tail

and
1
2
3
4
5

1
2
3
4

init

and
1
2
3
4
5

2
4

get

Then transfer the gained insights to arbitrary lists!
13

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”
bff (tail ◦ flatten)

v ′

s

t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”v
′

s

t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”v
′

s

t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t
get t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t
get t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t
get t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t
get t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

bff (tail ◦ flatten)
v ′

s

t

14

Semantic Bidirectionalization by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t
get t

14

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP’07]:

I depends on syntactic restraints

I allows (ad-hoc) some shape-changing updates

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I essential role: polymorphic function types

I major problem: rejects shape-changing updates

[V. et al., ICFP’10]:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either

15

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP’07]:

I depends on syntactic restraints

I allows (ad-hoc) some shape-changing updates

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I essential role: polymorphic function types

I major problem: rejects shape-changing updates

[V. et al., ICFP’10]:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either

15

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP’07]:

I depends on syntactic restraints

I allows (ad-hoc) some shape-changing updates

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I essential role: polymorphic function types

I major problem: rejects shape-changing updates

[V. et al., ICFP’10]:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either
15

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

S. Katayama.
Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected
Papers, pages 111–126. Intellect, 2007.

16

References II

E. Kitzelmann and U. Schmid.
Inductive synthesis of functional programs: An explanation
based generalization approach.
Journal of Machine Learning Research, 7:429–454, 2006.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang.
Combining syntactic and semantic bidirectionalization.
In International Conference on Functional Programming,
Proceedings, pages 181–192. ACM Press, 2010.

17

References III

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

18

