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Why is it not enough to look just at the data?

Because of:
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Bidirectional Transformations

Some further relevant aspects:

» What artefacts need to be specified?

» both to and from
» only one of them, the other derived
» a more abstract artefact, from which both derivable

» How are they specified, manipulated, analyzed?
» What properties are they expected to have?

» What influence does a user, modeller,

mer have?
programmer have answers/approaches

vary with field
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Bidirectionalization “by Hand”

A simple example:

get

get : [a] = [o]

get || = (]

get [x] =[]

get (x:y:zs) =y :(get zs)

One possible backwards transformation:

put ] [] =1

put [] [x] = [x] not total!
put (y':v) (x:y:zs)=x:y :(put v/ zs)
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Programming Language Approaches

There has been, and is ongoing, great work in the
“lenses” PL/DSLs tradition [Foster et al., ACM
TOPLAS'07, ...]. Not covered today.
We will mention /look at:

» syntactic program transformation

» semantic/type-based transformation

» benefits of higher-order types and abstraction

» search-based program synthesis (if time permits,
otherwise see PEPM'12 short paper)
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A Principled Approach: Constant-Complement
[Bancilhon & Spyratos, ACM TODS’81]

Given
get 1S =V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective and has an inverse inv :: (V,C) — S.

has to be effective!
Then:
put :V—=-5—=95

put v/ s = inv (V/,res s)
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A Principled Approach: Constant-Complement

Example:
get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2
inv :: (Nat, Naty) — Nat Other choices
inv (V,c) = 25/ + c possible, and
’ give different
behavior
Then:

put :: Nat — Nat — Nat
put v/ s = inv (V/,res s)
=2x%Vv 45 ‘mod' 2
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Automatic Bidirectionalization by Example

A syntactically derived complement function:
res [] =G
res [x] =Cox
res (x:y:zs) = C3 x (res zs)

Syntactic pairing:
paired [] =l .G)
paired [x]  =(] ,Gx)
paired (x:y:zs) = (y:v,C3 x c)
where (v, ¢) = paired zs
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Syntactic pairing:
paired [] =1 )
paired [x] =([] ,Cx)
paired (x:y:zs)=(y:v,C3xc)
where (v, c) = paired zs

Syntactic inversion:
inv ([] ,G) =[]
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Automatic Bidirectionalization by Example

Syntactic inversion:
inv ([] ,G) =[]
inv ([] ,Cox) =][x]
inv(y:v,C3xc)=x:y:zs
where zs = inv (v, ¢)
Then,

put v/ s = inv (V/,res s)

10



Automatic Bidirectionalization by Example

Syntactic inversion:
inv ([] ,G) =[]
inv ([] ,Cox) =][x]
inv(y:v,C3xc)=x:y:zs
where zs = inv (v, ¢)
Then,

put v/ s = inv (V/,res s)

corresponds to (the earlier seen):

put [] [] =1
put ] [x] = [x]
put (y:v) (x:y:zs)=x:y" :(put v/ zs)

10
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Aim: Write higher-order function bffT such
that any get and bff get satisfy
GetPut, PutGet, . ...

Examples:
flatten Cu "
> “abac
lal lb’ lal lcl
update
i 1 1 LA 1 < bff flatten abXC
a''b’''x'‘c

f “Bidirectionalization for free!” 12
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Like: )
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[n..1] if get = reverse
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Analyzing Specific Instances

Like: )
[2..n] if get = tail
[n..1] if get = reverse

get [1..n] = < [1..(min 5 n)] if get = take b

\

Indeed, this gives us traceability for free:
tail

Then transfer the gained insights to arbitrary lists!
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Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:
» depends on syntactic restraints
» allows (ad-hoc) some shape-changing updates

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» essential role: polymorphic function types
» major problem: rejects shape-changing updates

[V. et al., ICFP'10]:
» synthesis of the two techniques
» inherits limitations in program coverage from both
» strictly better in terms of updatability than either

15
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