
A Refuting Conjectures 1 and 3

Inspired by an example of [15] we have found that the presented denotational
treatment of recursive let-expressions is not consistent with the operational be-
havior. More precisely, the denotation of expressions that contain recursive let-
expressions may consist of more results than it is supposed to. Let us demonstrate
this by considering the following expression, which is actually very similar to an
example of [14, to show that rule (VarExp) of [2] is inappropriate]:

let b = True ? case b of {True→ False;False→ False} in b

Evaluating this expression in KiCSi yields True as first result. Asking for
more results leads to nontermination. This is the intended behavior in the pres-
ence of call-time choice: since b is a variable it can only be bound to one de-
terministic choice. Therefore, the evaluation of the term above should yield
the union of the results of the evaluation of let b = True in b and let b =
case b of {True→ False;False→ False} in b, i.e., denotationally the union of
{True} and ∅. But the denotational semantics we presented additionally yields
the result False. Let us examine the corresponding calculation in a bit more
detail:

Jlet b = True ? case b of {True→ False;False→ False} in bK∅,∅
=

⊔
t∈Tb=True?case b of{True→False;False→False}

JbK∅,[b7→t]

with Tb=True?case b of{True→False;False→False}

= min{t | t ∈
max((JTrue ? case b of {True→ False;False→ False}K∅,[b 7→t])⊥)}

= min{t | t ∈ max(({True} ∪

{
∅ if t = ⊥
{False} otherwise

)⊥)}

= {True,False}
= {True,False}

The problem becomes visible best in the third-last line of the calculation. Let us
assume that the result that originates from the non-recursive part of the right-
hand side of the variable binding, namely {True}, is not present. In this case
possible values for t, over which to minimize, are exactly ⊥ and False, because
⊥ ∈ max(∅⊥) and False ∈ max({False}⊥), but True /∈ max({False}⊥). After
minimization only ⊥ remains. If we, however, reconsider the original situation
where {True} is present, ⊥ does not even take part in the minimization, because
⊥ /∈ max(({True}∪∅)⊥). Due to True,False ∈ max(({True}∪{False})⊥) we now
have to minimize over the set {True,False} rather than over the set {⊥,False},
and thus False “survives”.

Contrary to the denotational semantics, the natural semantics does yield
the same results as KiCSi for the above expression, as we will show now. To
save space we abbreviate case b of {True→ False;False→ False} by seqbFalse.



The following derivation is the only successful derivation for the expression in
question:

(Val)
∅ : True ⇓ ∅ : True

(Or1)
∅ : True ? seqbFalse ⇓ ∅ : True

(Lookup)
{b 7→ True ? seqbFalse} : b ⇓ {b 7→ True} : True

(Let)
∅ : let b = True ? seqbFalse in b ⇓ {b 7→ True} : True

Crucially, choosing (Or2) instead of (Or1) leads to a partial derivation that
cannot be completed:

∅ : b ⇓ ??? ??? ⇓ ???
(???)

∅ : case b of {True→ False;False→ False} ⇓
(Or2)

∅ : True ? seqbFalse ⇓

For the rule (???) we could try to choose (LSelect1), (LSelect2), (LGuess1)

or (LGuess2), but in the left branch we would always end up asking the empty
heap for the value of b, thus getting stuck.

The example presented above proves that Conjecture 1 is false (and, more
specifically, Conjecture 3). From our current perspective that flaw seems to be
unfixable in any approach to a set-valued denotational semantics. To define such
a semantics for a recursive let-expression it is simply not sufficient to know
the sets which would be assigned to the right-hand sides of variable bindings.
Instead, it needs to be known wherefrom the elements in such a set arise. And
that information is not accessible in general.

We still think that in the absence of recursive let-expressions Conjecture 3
and (thus, by Theorem 1) Conjecture 1 hold. Also, we think that Conjecture 2
holds even in the presence of recursive let-expressions, though it is doubtful how
useful that is in practice, given that we now know that the part of our denota-
tional semantics concerning recursive let-expressions is not really adequate for
full Curry. The fragment that remains when we allow only non-recursive let-
expressions is still powerful enough to model an interesting part of the language.
Hence, our semantics remains a suitable choice for equational reasoning and as
a foundation for formally carrying over relational parametricity arguments to
functional logic languages.

References

14. Braßel, B., Huch, F.: On the tighter integration of functional and logic program-
ming. Technical Report 0710, Department of Computer Science, University Kiel
(2007)

15. Schmidt-Schauß, M., Machkasova, E., Sabel, D.: Counterexamples to simulation in
non-deterministic call-by-need lambda-calculi with letrec. Technical Report Frank-
38, Institute of Computer Science, University Frankfurt (2009)


