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Abstract

We study the question of efficiency improvement or deterioration for a
semantics-preserving program transformation technique for (lazy) functional
languages, based on composition of restricted macro tree transducers. By
annotating programs to reflect the intensional property “computation time”
explicitly in the computed output and by manipulating such annotations, we
formally prove syntactic conditions under which the composed program is
guaranteed to be not less efficient than the original program with respect to
the number of call-by-need reduction steps required to reach normal form.
The criteria developed can be checked automatically and efficiently, and thus
are suitable for integration into an optimizing compiler.

1 Introduction

Automatic transformation of programs is a key technology in software engineering,
as it enables programmers to work at a higher level of abstraction than would oth-
erwise be possible and thus raises programmer productivity. Prominent among its
many applications to lazy functional languages in particular is the elimination of
intermediate results, with the aim of mitigating the tension between modularity—
as desired for the sake of reliability, maintainability, and reusability—and efficiency
of programs. Under the name deforestation, automatic elimination of structured
intermediate results (i.e. trees) was pioneered in [Wad90] through an algorithmic
instance of the unfold/fold-technique [BD77] that is suitable for integration into an
optimizing compiler. This unfold/fold-based approach has seen many extensions—
e.g. in [HJ92], [MW93], and [Chi94]—, which we will collectively refer to as classical
deforestation in the following. A fundamental weakness of classical deforestation
is its inability to eliminate intermediate results that are built inside so-called accu-
mulating parameters. This problem is also shared by shortcut deforestation tech-
niques [GLP93, Chi99, Joh02, Sve02], based on denoting producers and consumers
of intermediate results in terms of certain higher-order, polymorphic combinators.

An accumulating parameter is one that may grow in recursive function calls. For
example, in the following rules defining a function g with two parameters:

g (δ v1 v2) z1 → δ (g v1 (g v2 z1))

∗Author’s version. Original publication in Theory of Computing Systems, 41:619–689, 2007.
†Research supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-4.



2 Introduction

g (α v1) z1 → α (g v1 z1)
g (β v1) z1 → β (g v1 z1)
g ε z1 → ε z1

every recursive call performs a strict descent in the first parameter, whereas the sec-
ond parameter is accumulating (cf. the first rule). These rules together with an initial
expression g v1 γ constitute the generally favored solution to the task of computing
(as a monadic output tree, i.e., essentially as a list) the prefix traversal of a tree
built from binary symbol δ, unary symbols α and β, and nullary symbol ε. In fact,
accumulating style is a quite common programming idiom in functional languages
(cf. e.g. Chapter 6 of [FFFK01]). As a consequence, the problem of eliminating in-
termediate results produced inside accumulating parameters has received much at-
tention [Küh98, Küh99, CDPR99, KGF02a, KGF02b, Nis02, VK04a, Voi04b, Nis04].
All solutions proposed so far derive from restricting the class of input programs to
certain extended schemes of primitive recursion, which can be formalized as (deter-
ministic) macro tree transducers [Eng80].

A macro tree transducer (for short mtt) translates trees over a ranked alphabet
of input symbols into trees over a ranked alphabet of output symbols. For this
translation process an mtt uses a set of functions which are defined by rewrite
rules. More precisely, every function is defined by pattern matching on the root
symbol of its first argument t. The right-hand side of every rule may contain the
other function arguments, output symbols, and recursive function calls—potentially
to other functions of the mtt—, the first arguments of which must be variables
that refer to subtrees of t. The above program for prefix traversal is a simple
example of an mtt. Since many typical functions on algebraic data types are defined
by structural descent on a distinguished argument, mtts represent a large class
of functional programs using accumulating parameters, which are called context
parameters in the scope of mtts. For example, manipulation of abstract syntax
trees in compilers often follows the recursion scheme of mtts [Vog91, FV98], and
the “tree transformation core” of XML processing languages can be compiled into
compositions of mtts [EM03a, MBPS05].

By transforming functional programs corresponding to restricted mtts into at-
tribute grammars [Knu68] or attributed tree transducers [Fül81], performing a com-
position construction on that level, and transforming the result back into a functional
program, [Küh98] and [CDPR99] were the first to achieve elimination of intermedi-
ate results produced inside accumulating parameters. The transformation technique
consists of a combination of constructions from [Fül81, Fra82, CF82, Gan83, GG84,
Gie88] and relies on certain syntactic restrictions imposed on the original mtts, viz.
context-linearity (meaning that context parameters are never copied, imposed on
the producing mtt) and weakly single-useness (as introduced in [Küh98], imposed
on both the producing and the consuming mtt). In [Voi01, VK04a] a direct con-
struction without detour to the “attribute world” was presented that is applicable
to a pair of less restricted mtts. In particular, it successfully performs a composition
also if the producer of the intermediate result is an arbitrary mtt, while the con-
sumer is a top-down tree transducer (for short tdtt) [Rou70, Tha70, Eng75], i.e., an
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mtt without context parameters. Thus, it captures a result from [EV85] that was
used in [Küh99] as another application of tree transducer theory to accumulating
parameter deforestation. In fact, except for [Nis04] (allowing a restricted use of
stacks in input programs), none of the techniques proposed to date for eliminating
intermediate results produced inside accumulating parameters handles a richer class
of programs than the construction from [VK04a]. The latter’s direct nature made it
suitable for integration into an optimizing compiler for the lazy functional language
Haskell [Reu03].

Beside preservation of program semantics (which for the technique from [VK04a]
was proved in [Voi01, VK04b]) more intensional properties are in focus when con-
sidering program transformations. The key question usually to be asked about a
source-to-source transformation implemented in a compiler is whether it will make
the compiled program more efficient in some sense. Elimination of intermediate re-
sults aims in this direction by avoiding memory allocations and deallocations, but
this alone is not sufficient. In fact, none of the deforestation techniques mentioned
above is guaranteed, when applied to arbitrary input programs, to produce out-
put programs that are faster—or at least not slower—than the original ones. The
standard result about classical deforestation is that it does not deteriorate the effi-
ciency of input programs consisting solely of functions that never copy any of their
arguments, where efficiency is measured by counting call-by-need reduction steps.
Examples show that for tree transducer composition such linearity of input pro-
grams is neither a sufficient nor a necessary condition for efficiency nondeterioration
with respect to this measure. For the special case that one of the mtts to be com-
posed is a tdtt sufficient conditions were developed in [Küh99] and [Höf99] using
rather ad-hoc reasoning. In [Voi02] we have studied this case using a more system-
atic approach, which in the work presented here is extended to the full construction
from [VK04a], thus providing the first formal efficiency guarantees for elimination of
intermediate results by general tree transducer composition. The criteria obtained
improve on previous results and cover many typical examples. They are decidable
and we present an efficient decision procedure (also suitable for integration into an
optimizing compiler), correctness of which was proved in [Voi05].

The general idea behind our approach to efficiency analysis is that of annotating
programs to reflect computation time in the observable output. A certain “decompo-
sition” of the respective annotation of the composed program in terms of a suitable
annotation of the original program allows to capture the time behavior of the com-
posed program without ever explicitly producing it. Combining and manipulating
annotations (of the original program only) then leads to our syntactic conditions for
efficiency nondeterioration. For a more detailed outline, please consult Section 4.1.

The current paper is derived from the technical report [Voi04a]; it contains ex-
actly the same results about call-by-need efficiency, but less proof details. The
thesis [Voi05] subsumes the mentioned technical report and thus also the work pre-
sented here. Additionally, it studies further (efficiency and semantic) aspects of tree
transducer composition as a program transformation. As mentioned above, the ear-
lier work [Voi02] studied more restricted composition instances. While part of the
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efficiency nondeterioration results from that study is reproduced in the present work,
this coverage is not complete. Hence, one theorem from [Voi02] will simply be re-
peated. The remainder of the paper is organized as follows (plus a proof appendix).
Section 2 defines necessary notions and introduces the basic concepts of mtts. Sec-
tion 3 recalls the composition construction to be studied. Section 4 develops our
efficiency analysis. Section 5 considers related work. Section 6 concludes.

2 Preliminaries

We denote by
�

the set of natural numbers including 0 and by � the set of all
integers. We set

�
+ =

�
\ {0}. For every n ∈

�
we denote by [n] the set {1, . . . , n}.

The mapping max gives for every finite, nonempty subset of
�

the maximum of that
subset’s elements.

Let S be a set. We denote by S∗ the set of finite sequences of elements of S,
where ε denotes the empty sequence. The power set of S is denoted by P(S). If S
is finite, then the number of its elements is denoted by |S|. The Cartesian product
of sets S1, . . . , Sn is denoted by S1 × · · · × Sn. The n-fold Cartesian product of
one set S is denoted by Sn. Given a binary relation ⇒ ∈ P(S2), we write s ⇒ s′

for (s, s′) ∈ ⇒. We denote by ⇒n (with n ∈
�
) the n-fold composition, by ⇒?

the reflexive, and by ⇒∗ the reflexive, transitive closure of ⇒, respectively (all in
P(S2)). If for every s, s1, s2 ∈ S with s ⇒∗ s1 and s ⇒∗ s2 there exists s′ ∈ S
with s1 ⇒

∗ s′ and s2 ⇒
∗ s′, then ⇒ is called confluent. If there is no infinite chain

s1 ⇒ s2 ⇒ s3 ⇒ · · ·, then ⇒ is called terminating. If s⇒∗ s′ and there is no s′′ with
s′ ⇒ s′′, then s′ is called a normal form of s with respect to ⇒. If ⇒ is confluent
and terminating, then every s ∈ S has a unique normal form, denoted by nf (⇒, s).

We denote by id the identity function on every set. We use two symmetric
versions of function composition, namely for all sets S1, S2, S3, and functions f :
S1 −→ S2 and g : S2 −→ S3 we define f ; g = g · f : S1 −→ S3 such that for
every s ∈ S1: (g · f)(s) = g(f(s)). For every function f : S −→ S and n ∈

�
the

n-fold composition of f is denoted by fn, where f 0 = id . The Cartesian product of
functions f1 : S1 −→ S ′

1, . . . , fn : Sn −→ S ′
n is denoted by f1 × · · · × fn : S1 × · · · ×

Sn −→ S ′
1×· · ·×S ′

n and defined by (f1×· · ·×fn)(s1, . . . , sn) = (f1(s1), . . . , fn(sn)).
For two functions f : S −→ � and g : S −→ � we write f ≤ g iff f(s) ≤ g(s) for
every s ∈ S, and we write f − g : S −→ � for the function that maps every s ∈ S
to f(s) − g(s).

A ranked alphabet is a pair (Σ, rankΣ), where Σ is a finite set of symbols and
rankΣ assigns to each of these symbols a natural number, its rank. In the following,
we drop the rankΣ-function from the denotation and only mention Σ when referring
to a ranked alphabet. For every p ∈

�
we define Σ(p) = {σ ∈ Σ | rankΣ(σ) = p}.

The rank p of a symbol σ is also denoted by writing σ(p). A nullary symbol is one
of rank 0; a unary symbol one of rank 1. For the sake of brevity, quantifications
over a symbol in a ranked alphabet implicitly quantify also its rank. E.g., we write
“for every σ ∈ Σ(p)” instead of “for every p ∈

�
, σ ∈ Σ(p)” and “there exists
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f ∈ F (r+1)” instead of “there exist r ∈
�

and f ∈ F (r+1)”. For a ranked alphabet
Σ we denote the set of all its ranks as rank(Σ) = {p ∈

�
| ∃σ ∈ Σ. rankΣ(σ) = p}.

We use several sets of lowercase variables. We denote by U the set {u1, u2, u3, . . .}
of variables, and for every p ∈

�
by Up the finite set {u1, . . . , up} ⊆ U ; analogously

for V , Y , Z, and Y ′ = {y′1, y
′
2, y

′
3, . . .}. For a ranked alphabet Σ and a set X of

variables disjoint from Σ we define the set TΣ(X) of trees over Σ indexed by X as
the smallest set T ⊆ (Σ∪X ∪{(, )})∗ such that (i) X ⊆ T and (ii) for every σ ∈ Σ(p)

and t1, . . . , tp ∈ T : (σ t1 · · · tp) ∈ T . If readability allows, outer brackets of trees
are omitted. Every symbol σ ∈ Σ(p) can also be considered as a function of type
TΣ(X)p −→ TΣ(X), mapping (t1, . . . , tp) to σ t1 · · · tp. We denote TΣ(∅) by TΣ.

We need the set of paths in a tree, the label at a path in a tree, and the subtree
at a path in a tree, given by the functions paths : TΣ(X) −→ P((

�
+)∗), lab :

{(t, π) | t ∈ TΣ(X), π ∈ paths(t)} −→ Σ ∪ X, and sub : {(t, π) | t ∈ TΣ(X), π ∈
paths(t)} −→ TΣ(X), which are defined, with x ∈ X, σ ∈ Σ(p), i ∈

�
+ , π ∈ (

�
+)∗,

and t, t1, . . . , tp ∈ TΣ(X), by the equations paths(x) = {ε}, paths(σ t1 · · · tp) = {ε}∪
{iπ | i ∈ [p], π ∈ paths(ti)}, lab(x, ε) = x, lab(σ t1 · · · tp, ε) = σ, lab(σ t1 · · · tp, iπ) =
lab(ti, π), sub(t, ε) = t, and sub(σ t1 · · · tp, iπ) = sub(ti, π). The label lab(t, ε) is
called the root symbol of the tree t. We also need the number of occurrences of some
symbol s ∈ Σ ∪ X in a tree, given by the function | � |s : TΣ(X) −→

�
, which is

defined by |t|s = |{π ∈ paths(t) | lab(t, π) = s}|.

We use two kinds of substitution over trees, written postfix and left-associative.
For pairwise different variables x1, . . . , xn ∈ X and trees t′1, . . . , t

′
n ∈ TΣ′(X ′) for a

ranked alphabet Σ′ and a set X ′ of variables such that (Σ ∪ Σ′) ∩ (X ∪ X ′) = ∅,
the first-order substitution � [x1, . . . , xn

� − t′1, . . . , t
′
n] : TΣ(X) −→ TΣ∪Σ′((X \

{x1, . . . , xn}) ∪ X ′) is defined, with x ∈ X \ {x1, . . . , xn}, i ∈ [n], σ ∈ Σ(p), and
t1, . . . , tp ∈ TΣ(X), by the equations x[· · ·] = x, xi[· · ·] = t′i, and (σ t1 · · · tp)[· · ·] =
σ t1[· · ·] · · · tp[· · ·]. For pairwise different symbols σ1 ∈ Σ(p1), . . . , σn ∈ Σ(pn)

and functions f1 : TΣ∪Σ′(X)p1 −→ TΣ∪Σ′(X), . . . , fn : TΣ∪Σ′(X)pn −→ TΣ∪Σ′(X)
for a ranked alphabet Σ′ such that Σ′ ∩ X = ∅, the second-order substitution

� [σ1, . . . , σn
� �− f1, . . . , fn] : TΣ(X) −→ TΣ∪Σ′(X) is defined, with x ∈ X, σ ∈

Σ(p) \ {σ1, . . . , σn}, i ∈ [n], and tj ∈ TΣ(X) for j ∈
�
, by the equations x[· · ·] = x,

(σ t1 · · · tp)[· · ·] = σ t1[· · ·] · · · tp[· · ·], and (σi t1 · · · tpi
)[· · ·] = fi(t1[· · ·], . . . , tpi

[· · ·]).
We also use alternative notations similar to set comprehensions, e.g. � [xi

� − t′i | i ∈
[n]], and appropriate multi-line notations for long substitutions.

A rewrite rule over Σ and X is a rule of the form lhs → rhs with lhs, rhs ∈ TΣ(X)
such that the left-hand side lhs does not contain two occurrences of the same variable
and every variable occurring in the right-hand side rhs is also contained in lhs. A
set R of rewrite rules over Σ and X is called a rewrite system [DJ90, BN98] (over
Σ and X, but also over Σ′ ⊇ Σ and X ′ ⊇ X if Σ′ ∩ X ′ = ∅). For every Σ′ ⊇ Σ
(where Σ′ and X are not necessarily disjoint) it induces a binary reduction relation
⇒R ⊆ TΣ′ × TΣ′ such that t ⇒R t′ iff R contains a rule lhs → rhs, there is a tree
c ∈ TΣ′({x}) (with x /∈ Σ′ ∪X) that contains x exactly once, and there exist n ∈

�
,

trees t1, . . . , tn ∈ TΣ′ , and pairwise different variables x1, . . . , xn ∈ X such that
t = c[x � − lhs[x1, . . . , xn

� − t1, . . . , tn]] and t′ = c[x � − rhs[x1, . . . , xn
� − t1, . . . , tn]].
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Definition 2.1 (macro tree transducer, RHS)
A macro tree transducer (for short mtt) M is a tuple (F,Σ,∆, e, R) consisting of:

− a ranked alphabet F of states, where F (0) = ∅ and F 6= ∅,

− a ranked alphabet Σ of input symbols, where Σ(0) 6= ∅ and F ∩ Σ = ∅,

− a ranked alphabet ∆ of output symbols, where ∆(0) 6= ∅ and F ∩ ∆ = ∅,

− an initial expression e ∈ RHS (F,∆, U1, ∅), and

− a set R containing for every f ∈ F (r+1) and σ ∈ Σ(p) exactly one rule of the
form f (σ u1 · · ·up) y1 · · · yr → rhsM,f,σ, where rhsM,f,σ ∈ RHS (F,∆, Up, Yr).

Here for variable sets X and X ′ the set RHS (F,∆, X,X ′) is the smallest set RHS ⊆
TF∪∆(X ∪X ′) satisfying the following conditions:

− X ′ ⊆ RHS ,

− for every δ ∈ ∆(q) and φ1, . . . , φq ∈ RHS : (δ φ1 · · ·φq) ∈ RHS , and

− for every f ∈ F (r+1), x ∈ X, φ1, . . . , φr ∈ RHS : (f x φ1 · · ·φr) ∈ RHS .

Note that R in the above definition is a rewrite system over F ∪ Σ ∪ ∆ and U ∪ Y .
A rule right-hand side of M is the right-hand side of some rule in R. For σ ∈ Σ,
every rule in R of the form f (σ · · ·) · · · → · · · for some f ∈ F is called a σ-
rule. A subtree of the form (f t · · ·) is referred to as a call to f on t. The first
argument of a state f is called recursion argument ; the others context parameters.
Correspondingly, variables from U are called recursion variables and variables from
Y are called context variables. However, the actual variable names used in mtt rules
are not fixed to come from Up and Yr for some p, r ∈

�
; consistent renaming is

allowed. For example, we later use recursion variables from V and context variables
from Z for the second mtt in the composition construction (with states in G, input
symbols in ∆, and output symbols in Ω), in the way we have already done for the
introductory example.

Example 2.2 (two mtts, to be used as running example)
Let Σmon = {α(1), β(1), ε(0)}, ∆tree = {δ(2), α(1), β(1), ε(0)}, and Ωmon = {δ(1), α(1), β(1),

ε(1), γ(0)}. We define the mtts Mspine = ({f (2)
1 , f

(3)
2 },Σmon ,∆tree , f1 u1 ε, Rspine) with

the set of rules

Rspine : f1 (α u1) y1 → α (f1 u1 y1) f2 (α u1) y1 y2 → α (f1 u1 (δ y1 y2))
f1 (β u1) y1 → f2 u1 y1 (β ε) f2 (β u1) y1 y2 → f2 u1 y1 (β (β y2))
f1 ε y1 → y1 f2 ε y1 y2 → δ y1 y2

and Mpfx = ({g(2)},∆tree ,Ωmon , g v1 γ, Rpfx ), where Rpfx contains the rules for g
given in the introduction.

The output computed by an mtt for a particular input tree is obtained by substi-
tuting the input tree for u1 (or for v1 if recursion variables are drawn from V ) in
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the mtt’s initial expression and then computing the normal form with respect to the
reduction relation induced by the mtt’s set of rules. This normal form exists and is
unique because the rules of any mtt induce a confluent and terminating reduction
relation (cf. e.g. [FV98]).

Definition 2.3 (semantics of an mtt)
The tree transduction induced by an mtt M = (F,Σ,∆, e, R) is the total function
τM : TΣ −→ T∆ that assigns to every tree t ∈ TΣ the value nf (⇒R, e[u1

� − t]).

The tree transduction induced by the mtt Mspine from Example 2.2 maps every
element of TΣmon

to one of T∆tree
as depicted in Figure 1. While that transforma-

tion might seem a bit artificial in comparison to the more straightforward examples
in [KV01] and [VK04a], the mtts Mspine and Mpfx together serve as a good run-
ning example here because they seem to constitute about the simplest reasonable
composition pair embodying all the phenomena we later want to illustrate when
developing our efficiency analysis. The example also has the advantage of requiring
a quite disciplined, general approach rather than tempting us to found the analysis
on too specific assumptions about the program to be transformed. In particular,
Mspine is complex enough to defeat simplistic analysis attempts based solely on the
size of—i.e. the number of symbols in—the intermediate result compared to that of
the original input.

∀k ≥ 0, n0, nk ≥ 0, m1, . . . , mk > 0, n1, . . . , nk−1 > 0.

αn0

βm1

αn1

...

βmk

αnk

ε

7→

αn0+···+nk

δ

...

δ

ε β2m1−1

ε

β2mk−1

ε

Figure 1: τMspine

Definition 2.4 (syntactic restrictions of mtts)
An mtt M = (F,Σ,∆, e, R) is:

− a top-down tree transducer (for short tdtt) if F = F (1)

− basic [Vog87] if e and the right-hand sides of the rules in R do not contain any
nested calls, i.e. subtrees of the form (f · · · (f ′ · · ·) · · ·) with f, f ′ ∈ F

− weakly single-use if for every σ ∈ Σ(p), i ∈ [p], and f ∈ F \F (1) at most one call
to f on ui occurs in all right-hand sides of σ-rules in R
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− recursion-linear if for every f ∈ F , σ ∈ Σ(p), and i ∈ [p]: |rhsM,f,σ|ui
≤ 1

− context-linear if for every f ∈ F (r+1), σ ∈ Σ, and k ∈ [r]: |rhsM,f,σ|yk
≤ 1

− linear if it is recursion- and context-linear

− atmost if it is recursion-linear and it is context-linear or basic

− recursion-nondeleting if for every f ∈ F , σ ∈ Σ(p), and i ∈ [p]: |rhsM,f,σ|ui
≥ 1

− context-nondeleting if for every f ∈ F (r+1), σ ∈ Σ, and k ∈ [r]: |rhsM,f,σ|yk
≥ 1

− nondeleting if it is recursion-nondeleting and context-nondeleting

− atleast if it is recursion-nondeleting and it is context-nondeleting or basic.

The weakly single-use property as defined above is slightly less restrictive than the
one originally introduced in [Küh98], where occurrence of two or more calls to f on
ui in right-hand sides of σ-rules (for given σ and i) was forbidden for all states f ,
not just for nonunary ones, and where an analogous ban was imposed also regarding
the initial expression (the “right-hand side of the rule for the initial synthesized
function at the root symbol” in the terminology of [Küh98]). It was, however,
observed in [VK04a] that the property as liberalized above actually suffices to ensure
applicability and semantic correctness of the construction to be recalled in the next
section.

The following lemma was proved in [Voi04a]. Since it is straightforward, we do
not include the proof here. Similar lemmas also appear in [EM99] and [EM03b].

Lemma 2.5 (properties of context-linear and -nondeleting mtts, resp.)
Let M = (F,Σ,∆, e, R) be an mtt. For every t ∈ TΣ, f ∈ F (r+1), and k ∈ [r]:

1. if M is context-linear, then |nf (⇒R, f t y1 · · · yr)|yk
≤ 1

2. if M is context-nondeleting, then |nf (⇒R, f t y1 · · · yr)|yk
≥ 1.

The following lemma, which is proved in the appendix, will also be useful.

Lemma 2.6 (auxiliary, actual vs. formal parameters)
LetM = (F,Σ,∆, e, R) be an mtt. For every t ∈ TΣ, f ∈ F (r+1), and θ1, . . . , θr ∈ T∆:

nf (⇒R, f t θ1 · · · θr) = nf (⇒R, f t y1 · · · yr)[yk
� − θk | k ∈ [r]].

3 Tree transducer composition

In [Voi01, VK04a] a direct composition construction is presented that given two mtts
M1 and M2, where the output ranked alphabet of M1 is the input ranked alphabet of
M2 and where one of M1 and M2 is a tdtt, or M1 is context-linear and M2 is weakly
single-use, produces an mtt M1;M2 such that τM1;M2

= τM1
; τM2

. Before recalling
the formal construction (with notations adapted to the setting of the present paper),
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we briefly consider its ingredients on an intuitive level. For a more detailed step-
by-step development of the underlying ideas, please consult Section 4 of [VK04a].
The brave-hearted may also want to study the formal correctness proof supplied
in [VK04b].

The key to avoiding the production and consumption of an intermediate result
is that whenever a state g of M2 would recurse on the output generated by a state
f of M1, the final output is instead computed more directly through a call to a new
state fg of M1;M2 on f ’s recursion argument. This means that every nesting of the
form

g (f t φ1 · · ·φr) η1 · · · ηs (1)

is replaced by an appropriate call to fg on t. Given that the (intermediate) output
generated by f is essentially built up by patching together right-hand sides of M1’s
rules at the symbols occurring in t, the rules for such a new state fg are obtained
by “translating” the right-hand sides of rules for f using M2, starting with g. More
precisely, for every potential root symbol σ of t, rhsM1;M2,fg,σ is determined from

g rhsM1,f,σ z1 · · · zs—where z1 · · · zs are the context variables of fg that correspond
to the context parameters of the outer g-call in (1)—by exhaustively rewriting with
the rules of M2. Thus, the symbols in rhsM1,f,σ that would otherwise build part
of the intermediate data structure passed at runtime from the inner f -call to the
outer g-call in (1) are consumed at transformation time. Since rhsM1,f,σ may contain
recursive calls, one may during the rewriting also encounter situations corresponding
to a nesting like (1) above (possibly for some f ′ 6= f and g′ 6= g). To ensure that all
parts of rhsM1,f,σ—including those in context parameter positions of recursive calls—
are effectively reached by the transformation, any call to a new state replacing such
a nesting takes as arguments beside the unchanged context parameters of the outer
state from M2 also “translated” versions of the context parameters of the inner state
from M1 with all states of M2. Under this strategy, the replacement for a call like (1)
takes the following form (assuming that M2 has exactly µ ∈

�
+ states g1, . . . , gµ):

fg t (g1 φ1

�

�

�

�
· · · ) · · · (gµ φ1

�

�

�

�
· · · ) · · · (g1 φr

�

�

�

�
· · · ) · · · (gµ φr

�

�

�

�
· · · ) η1 · · · ηs (2)

Since fg is thus provided with precomputed translations of f ’s context parameters,
any call to some state of M2 on some context variable of f surfacing during the pro-
cessing of g rhsM1,f,σ z1 · · · zs can be resolved by simply selecting the corresponding
parameter of fg, modeled by a rewrite system Pre in the formal construction below.

Of course, the crux in this strategy of sending the states of M2 into the context
parameters of calls to M1’s states is to determine what should go into the boxes in
the replacement (2) for (1) above. Here the preconditions on M1 and M2 enter the
picture. If one of the two mtts is actually a tdtt, then no boxes are present because
either r = 0 or none of the g1, . . . , gµ takes any context parameters. Otherwise,
context-linearity of M1 and weakly single-useness of M2 ensure that the context
parameter values with which the states g1, . . . , gµ may reach the context parameters
of the inner f -call during reduction of (1) are unambiguous. Moreover, these values
can themselves be computed—without leaving the recursion scheme of mtts—by
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new states kf lg′ for every k ∈ [r], g′ ∈ {g1, . . . , gµ}, and context parameter position l
of g′, as indicated in Figure 2. Hence, these auxiliary states can be used to provide
the information missing in (2). In the formal construction the precise shape of the
thus completed replacement for (1) is specified in the rewrite system Pair , built
up using the function nestf to arrange a repeated nesting of g1, . . . , gµ-translations
of f ’s context parameters interspersed with appropriate calls to kf lg′-states. The
reasons why this nesting is necessary but can be kept of finite depth are discussed at
length in [VK04a]. There it is also motivated which context parameters the auxiliary
states require and how their rules can be constructed following an intricate scheme
of “walking upwards” from occurrences of context variables in M1’s right-hand sides,
using par -functions that assemble information about context parameters of recursive
calls in M2’s rules at symbols encountered on the way to the root.

g

f

Σ

φ1 φr

η1 ηs

· · ·

· · ·

t =

⇒∗
R1

g

∆

η1 ηs· · ·

φk

⇒∗
R2

Ω
g′

φk ? ?· · ·

kf lg′ computes the value in the
lth question mark position

Figure 2: Role of the auxiliary states.

The following construction differs from Construction 5.1 in [VK04a] only in that
the required dummy symbol nil is explicitly added to the output ranked alphabet
rather than randomly picking an existing nullary symbol.

Construction 3.1 (direct composition of restricted mtts)
Let M1 = (F,Σ,∆, eM1

, R1) and M2 = (G,∆,Ω, eM2
, R2) be mtts such that one of

the two is a tdtt, or M1 is context-linear and M2 is weakly single-use. Without loss
of generality, assume that F and G are disjoint and that M1 uses recursion variables
from U and context variables from Y , whereas M2 uses V and Z, respectively.
Let µ = |G| and fix some ordering of the states in G such that G = {g1, . . . , gµ}.
For every n ∈ [µ] let sn ∈

�
such that gn ∈ G(sn+1). Additionally, set rmax =

max(rank(F )) − 1, ZG = {zg1,1, . . . , zg1,s1
, . . . , zgµ,1, . . . , zgµ,sµ}, and let nil /∈ Ω be

some arbitrary symbol. The mtt M1;M2 = (H,Σ,Ω∪ {nil (0)}, eM1;M2
, R1;R2), using

recursion variables from U and context variables from {yk,g | k ∈ [rmax ], g ∈ G} ∪
Z ∪ ZG, is obtained as follows:

H = {fg
(r∗µ+s+1)

| f ∈ F (r+1), g ∈ G(s+1)}

∪ {kf lg
(r∗µ+|ZG|+1)

| f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], l ∈ [s]} ,

eM1;M2
= nf (⇒R2∪Pair , eM2

[v1
� − eM1

]) , and
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R1;R2 contains:

− for every f ∈ F (r+1), g ∈ G(s+1), and σ ∈ Σ(p) the rule

fg (σ u1 · · ·up) y1,g1
· · · yr,gµ

z1 · · · zs → nf (⇒R2∪Pre∪Pair , g rhsM1,f,σ z1 · · · zs)

− and for every f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], l ∈ [s], and σ ∈ Σ(p) the rule

kf lg (σ u1 · · ·up) y1,g1
· · · yr,gµ

zg1,1 · · · zgµ,sµ → nf (⇒R2∪Pre∪Pair , %) ,

where % = nil if rhsM1,f,σ does not contain the context variable yk; otherwise,
% = parM2,rhsM1,f,σ

(π, g, l), where π ∈ paths(rhsM1,f,σ) is the path of the unique

(because M1 is context-linear by the construction’s preconditions if the ranges
of the above quantifications of f , g, k, and l are nonempty, given that then
neither M1 nor M2 can be a tdtt) occurrence of yk in rhsM1,f,σ.

The rewrite systems Pre (over G∪{y
(0)
k | k ∈ [rmax ]}∪{y

(0)
k,g | k ∈ [rmax ], g ∈ G} and

Z) and Pair (over F ∪G ∪H ∪ {nil} and {u} ∪ Y ′ ∪ Z) are defined as follows:

Pre : g yk z1 · · · zs → yk,g ∀g ∈ G(s+1), k ∈ [rmax ]

Pair : g (f u y′1 · · · y
′
r) z1 · · · zs → ∀g ∈ G(s+1), f ∈ F (r+1)

fg u nestf(1, g1, ∅)[zg,l
� − zl | l ∈ [s],

zg′,l
� − nil | g′ ∈ G(s′+1) \ {g}, l ∈ [s′]]

· · ·
nestf(r, gµ, ∅)[zg,l

� − zl | l ∈ [s],
zg′,l

� − nil | g′ ∈ G(s′+1) \ {g}, l ∈ [s′]]
z1 · · · zs

For every f ∈ F (r+1) the function nestf : [r] ×G×P([r] ×G) −→ TG∪H∪{nil}({u} ∪
Y ′

r ∪ ZG) is defined by setting for every k ∈ [r], g′ ∈ G(s′+1), and C ⊆ [r] ×G:

nestf(k, g
′, C)

=







nil if (k, g′) ∈ C
g′ y′k (kf1g′ u nestf (1, g1, C∪{(k, g

′)}) · · · nestf(r, gµ, C∪{(k, g
′)})

zg1,1 · · · zgµ,sµ)
· · ·

(kfs′g′ u nestf(1, g1, C∪{(k, g
′)}) · · · nestf (r, gµ, C∪{(k, g

′)})
zg1,1 · · · zgµ,sµ) otherwise.

With these definitions, the reduction relations ⇒R2∪Pair and ⇒R2∪Pre∪Pair are con-
fluent and terminating, which justifies the above uses of respective normal forms.

For every p ∈
�
, r ∈

�
+ with (r + 1) ∈ rank(F ), and φ ∈ RHS (F,∆, Up, Yr) the

function parM2,φ : {(π, g, l) | π ∈ paths(φ), lab(φ, π) /∈ Up, g ∈ G(s+1), l ∈ [s]} −→
TF∪G∪H∪∆∪Ω∪{nil}(Up∪Yr∪ZG) is defined by induction over the prefix-order of paths
in φ as follows. For every g ∈ G(s+1) and l ∈ [s]:
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− parM2,φ(ε, g, l) = zg,l

− For every j ∈
�

+ and πj ∈ paths(φ) with lab(φ, πj) /∈ Up by case distinction:

Case a: lab(φ, π) = f for some f ∈ F (r′+1), where j − 1 ∈ [r′]. Then:

parM2,φ(πj, g, l) = ((j − 1)f lg u nestf (1, g1, {(j − 1, g)})
· · ·

nestf (r
′, gµ, {(j − 1, g)}) zg1,1 · · · zgµ,sµ)

[u � − lab(φ, π1),
y′1, . . . , y

′
r′

� − sub(φ, π2), . . . , sub(φ, π(r′ + 1)),
zg1,1, . . . , zgµ,sµ

� − parM2,φ(π, g1, 1), . . . , parM2,φ(π, gµ, sµ)].

Case b: lab(φ, π) = δ for some δ ∈ ∆(q), where j ∈ [q]. If no call to g on vj exists
in any of the right-hand sides of the δ-rules of M2, then parM2,φ(πj, g, l) = nil .
Otherwise, there must be exactly one δ-rule containing such a call and that call
must be unique in the rule’s right-hand side because M2 is weakly single-use
by the construction’s preconditions if the ranges of the above quantifications
of r, g, and l are nonempty, given that then neither M1 nor M2 can be a tdtt,
and because g ∈ G(s+1) and l ∈ [s] imply that g is a nonunary state. Hence,
there are unique g′ ∈ G(s′+1) and ψ1, . . . , ψs ∈ RHS (G,Ω, Vq, Zs′) such that a
rule of the form

g′ (δ v1 · · · vq) z1 · · · zs′ → · · · (g vj ψ1 · · ·ψs) · · ·

is in R2. Then:

parM2,φ(πj, g, l) = ψl[v1, . . . , vq
� − sub(φ, π1), . . . , sub(φ, πq),

z1, . . . , zs′
� − parM2,φ(π, g

′, 1), . . . , parM2,φ(π, g
′, s′)].

The following theorem was proved in [Voi01]; a more detailed account is in [VK04b].

Theorem 3.2 (correctness of Constr. 3.1; Theorem 5.2 of [VK04a])
τM1

; τM2
= τM1;M2

For a detailed protocol of the presented construction in action for two concrete
mtts, please consult Section 5.2 of [VK04a]. Here we give only the values of nest-
functions that are different from nil in its application to the running example, and
the corresponding composition result.

Example 3.3 (composition of the mtts from Example 2.2)
When applying Construction 3.1 to the mtts Mspine and Mpfx , the following non-nil
values of nest-functions are relevant:

nestf1
(1, g, ∅) = g y′1 (1f1

1g u nil zg,1)
nestf2

(1, g, ∅) = g y′1 (1f2
1g u nil (g y′2 (2f2

1g u nil nil zg,1)) zg,1)
nestf2

(1, g, {(2, g)}) = g y′1 (1f2
1g u nil nil zg,1)

nestf2
(2, g, ∅) = g y′2 (2f2

1g u (g y′1 (1f2
1g u nil nil zg,1)) nil zg,1)

nestf2
(2, g, {(1, g)}) = g y′2 (2f2

1g u nil nil zg,1).
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The resulting mtt is Mspine ;Mpfx = ({f1g
(3)
, f2g

(4)
, 1f1

1g
(3)
, 1f2

1g
(4)
, 2f2

1g
(4)
},Σmon ,

Ωmon ∪ {nil (0)}, eMspine ;Mpfx
, Rspine ;Rpfx ) with rules

Rspine ;Rpfx :

f1g (α u1) y1,g z1 → α (f1g u1 y1,g z1)

f1g (β u1) y1,g z1 → f2g u1 y1,g (β (ε (2f2
1g u1 y1,g nil z1))) z1

f1g ε y1,g z1 → y1,g

f2g (α u1) y1,g y2,g z1 → α (f1g u1 (δ y1,g) z1)

f2g (β u1) y1,g y2,g z1 → f2g u1 y1,g (β (β y2,g)) z1
f2g ε y1,g y2,g z1 → δ y1,g

1f1
1g (α u1) y1,g zg,1 → 1f1

1g u1 nil zg,1

1f1
1g (β u1) y1,g zg,1 → 1f2

1g u1 nil (β (ε (2f2
1g u1 nil nil zg,1))) zg,1

1f1
1g ε y1,g zg,1 → zg,1

1f2
1g (α u1) y1,g y2,g zg,1 → y2,g

1f2
1g (β u1) y1,g y2,g zg,1 → 1f2

1g u1 nil (β (β y2,g)) zg,1

1f2
1g ε y1,g y2,g zg,1 → y2,g

2f2
1g (α u1) y1,g y2,g zg,1 → 1f1

1g u1 nil zg,1

2f2
1g (β u1) y1,g y2,g zg,1 → 2f2

1g u1 y1,g nil zg,1

2f2
1g ε y1,g y2,g zg,1 → zg,1

and initial expression eMspine ;Mpfx
= f1g u1 (ε (1f1

1g u1 nil γ)) γ.

The mtt obtained in the previous example is unnecessarily complicated because—
for the sake of generality—the composition construction tends to introduce context
parameters that are superfluous in the sense that they will never (for no possible
input tree) influence the output generated by a state. Here this is the case for the
second context parameter of f1g, the second and third context parameters of f2g,
the first context parameter of 1f1

1g, the first and third context parameters of 1f2
1g,

and the first and second context parameters of 2f2
1g. In a practical implementation

such as [Reu03] the mtt resulting from a composition should be post-processed
to eliminate such ballast. An appropriate transformation detecting and removing
all superfluous context parameters of an mtt was developed already in Section 4.1
of [Voi01], based on a straightforward fixpoint construction. For Mspine ;Mpfx it yields
an mtt with states of reduced ranks, initial expression f1g u1 (ε (1f1

1g u1 γ)), and
simplified rules—explicitly listed in [Voi04a]—obtained by eliminating the context
parameters indicated above from all calls in left- and right-hand sides.

4 Formal efficiency analysis

We want to formally relate the efficiency of a composed program obtained by Con-
struction 3.1 (plus post-processing by eliminating superfluous context parameters)
to the efficiency of the original program. From the construction it is obvious that
intermediate data structures (over the ranked alphabet ∆) produced by M1 in the
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original program do not appear in the composed program. Thus, no memory cells
for this intermediate result have to be allocated in the heap and later be deallocated
by the garbage collector. To make sure that this beneficial effect on space usage is
not in vain, the composed program should not take more time to compute its output
than the original program. A reasonable notion for the “cost” of a computation to
consider is therefore the number of reduction steps required to reach the final out-
put for a given input. While the reduction relation used to provide the semantics
of an mtt in Section 2 is in general nondeterministic (though confluent), imple-
mentations of functional languages are typically based on deterministic reduction
strategies. Since we are interested in applying tree transducer composition to lazy
languages, we study call-by-need reduction [Wad71] (leftmost-outermost reduction
with sharing). Even though the pure number of reduction steps is a somewhat coarse
efficiency measure, abstracting from the fact that not every step necessarily requires
the same amount of time in a concrete implementation, it is usually sufficient in
practice. For example, classical deforestation is successfully applied in a production
compiler for the lazy functional language Clean [AGS03], despite the fact that the
only known formal efficiency statement regarding this transformation is that it does
not increase the number of call-by-need reduction steps for linear programs (the
number of call-by-name steps, respectively, for arbitrary programs [San96a], where
call-by-name means leftmost-outermost reduction without sharing, which in turn is
similar to outside-in or OI derivation, not enforcing left-to-right evaluation, in the
tree transducer literature [ES77]).

Assume that the functions cbnM1;M2
: TΣ −→

�
and cbnM1;M2

: TΣ −→
�

associate to every input tree t ∈ TΣ the number of call-by-need steps required by
the original and the composed program, respectively, to compute the corresponding
output tree (τM1

; τM2
)(t) = τM1;M2

(t). That is, cbnM1;M2
(t) denotes the number

of call-by-need steps required to reach this output using rules from R1 ∪ R2 on
eM2

[v1
� − eM1

[u1
� − t]], while cbnM1;M2

(t) denotes the number of call-by-need steps

required to reach it using rules from R1;R2 on eM1;M2
[u1

� − t]. The (original)
program consisting of rules R1 ∪R2 and “initial expression” eM2

[v1
� − eM1

] will also
be referred to as M1 ;M2 in the following, and similarly for annotated versions of M1

and M2.

Example 4.1 (call-by-need reductions for the running example)
Figure 3 shows the call-by-need reduction sequence for Mspine ;Mpfx on a particular
input. The encircled areas correspond to memory cells that have to be allocated for
the intermediate data structure. Figure 4 shows the call-by-need reduction sequence
for the corresponding composed and post-processed program on the same input.
Note that no intermediate data structure is created and that one reduction step less
is required.

Since the elimination of superfluous context parameters has no effect with respect
to the number of reduction steps, we need not pay special attention to the post-
processing in the efficiency analysis and will instead study the immediate outcome
of the composition construction itself. The aim is to find conditions under which
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for every t ∈ TΣ we have cbnM1;M2
(t) ≤ cbnM1;M2

(t). Actually, it would also be
satisfactory to find some small constant d ∈

�
such that for every possible input

tree t the following holds:

cbnM1;M2
(t) ≤ cbnM1;M2

(t) + d (3)

This would mean that, whatever the input is, the composed program performs at
most d additional reduction steps but avoids the allocation and eventual dealloca-
tion of an intermediate data structure of arbitrary size. Note that the time costs
associated to the prevented memory allocations and deallocations are neglected in
our analysis, but would anyway weigh in on the plus side for our construction in
practice. A negative proviso with respect to practical relevance of our analysis re-
sults is the imprecision caused by abstracting from the different costs potentially
inherent in different (kinds of) reduction steps. Measurements in [Reu03] demon-
strated that such imprecision is particularly manifest in the presence of tail calls,
potentially leading to the situation that the composed program is slower than the
original one, even though the total number of reduction steps performed by it is not
bigger. To maintain the applicability of our analysis results in an optimizing com-
piler, we have shown in [Voi05] how to adjust the criteria produced by our efficiency
study so that tail calls are taken into account appropriately. Another aspect that
is considered in [Voi05] is the possibility that the final output of the program to
be transformed is to be evaluated only partially (rather than until normal form is
reached). In the remainder of the current paper, however, we will simply take (3) as
criterion for efficiency nondeterioration. As mentioned above, this agrees with what
has been done for classical deforestation.

4.1 Outline of the analysis

In the following subsections we will work towards two theorems (Theorems 4.19
and 4.39) providing conditions as desired. Since computation time is an intensional
property of a program, i.e., it cannot be determined by solely observing which out-
put is generated for which input according to the program’s (extensional) semantics,
methods developed to reason about extensional properties of programs are not read-
ily applicable to study it. For example, the correctness proof for our composition
construction in [VK04b] makes heavy use of reordering of normal form computa-
tions, justified by the fact that the reduction relation induced by the rules of any
mtt is confluent. But since the efficiency analysis we are aiming at here is con-
cerned with a particular fixed reduction strategy, we cannot make use of confluence
in this way now. A seemingly näıve—but often quite effective, see related work in
Section 5.3—strategy in such a situation is to externalize the intensional property,
e.g. by transforming or annotating programs, thus making it more accessible. Our
strategy can be summarized as follows:

− First, we enrich the original and the composed program, respectively, by an-
notating their rules with special symbols and adding new rules in such a way
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that the output trees computed for a particular input tree reflect the numbers
of call-by-need reduction steps performed by the programs under consideration
for that input. This follows the development in [Voi02].

− Then, we devise another annotation for the original program such that apply-
ing the composition construction to the thus annotated original program yields
essentially the annotated version of the composed program. What was a simple
exercise for the special case considered in [Voi02] requires some imagination for
the general case. In fact, we consider the presented annotation (and the associ-
ated proof establishing its suitability) a key contribution because on an intuitive
level it exposes the essence of the rather complicated construction from [VK04a]
in a surprisingly elegant way, while on the technical side it allows to completely
remove the details of the composition construction from concern in the remain-
der of the analysis.

− Left with annotated versions of the original program only, we can combine and
manipulate annotations, trading those special symbols that correspond to steps
of the composed program against those that correspond to steps of the original
program. The aim is to arrive at an annotation for which simple conditions
suffice to guarantee that for every input the number of symbols produced of the
former kind is outweighed by that of symbols produced of the latter kind. Some
of the involved manipulations will be safe—i.e., will not lead to an overestimation
of the number of steps performed by the original program or an underestimation
of the number of steps performed by the composed program—only under certain
conditions that will also be recorded.

4.2 Annotating programs to reflect computational costs

For the remainder of the paper, let M1 = (F,Σ,∆, eM1
, R1) and M2 = (G,∆,Ω, eM2

,
R2) be two fixed mtts to which Construction 3.1 is applicable, yielding the mtt
M1;M2 = (H,Σ,Ω ∪ {nil}, eM1;M2

, R1;R2). We use the notions and variable naming
conventions from Construction 3.1. Special unary symbols �, •, ◦, and ?, assumed
not to occur in Σ ∪ ∆ ∪ Ω ∪ F ∪ G, will be used in annotated versions of the mtts
under consideration.

The natural way to keep track of reduction steps in the output is by generating
a dedicated “tick”-symbol whenever some rewrite rule is applied, e.g. by replacing
every rule

f (σ u1 · · ·up) y1 · · · yr → rhs

by a corresponding one with an additional symbol on top of its right-hand side:

f (σ u1 · · ·up) y1 · · ·yr → � rhs.

The dedicated symbol then appears scattered over the output tree generated by
computing with such annotated rules. Compared to an attempt of gathering all
the information about performed reduction steps in one place, e.g. at the root of



18 Formal efficiency analysis

the complete output or as an additional function result, this has the advantage
that the origin of computational costs is remembered. In particular, discarding a
piece of output produced inside an unused argument position also removes from
consideration any computational costs associated with it. Moreover, the locational
information associated with the positions of �-symbols is important if the output
produced by the annotated rules above is not yet the final output. Recall that in
the original program—computing with rules R1∪R2 on an instantiation of eM2

[v1
� −

eM1
]—the rules R1 are used to produce an intermediate result then consumed by

states of M2. The latter must therefore not only record their own reduction steps
properly in the final output, but also propagate information about the computational
costs of M1 for producing the intermediate result. By simply including in their count
any �-symbols they come across, they can count exactly those reduction steps of M1

that produce parts of the intermediate result actually demanded during computation
of the final output. The following definition gives annotated versions of M1 and M2

along these lines.

Definition 4.2 (M→�
1 and M�→•

2 )
The mtts M→�

1 = (F,Σ,∆ ∪ {�}, eM1
, R→�

1 ) and M�→•
2 = (G,∆ ∪ {�},Ω ∪ {•}, eM2

,
R�→•

2 ) have rules as follows:

R→�
1 :
f (σ u1 · · ·up) y1 · · · yr → � rhsM1,f,σ ∀f ∈ F (r+1), σ ∈ Σ(p)

R�→•
2 :
g (δ v1 · · · vq) z1 · · · zs → • rhsM2,g,δ ∀g ∈ G(s+1), δ ∈ ∆(q)

g (� v1) z1 · · · zs → • (g v1 z1 · · · zs) ∀g ∈ G(s+1)

Note that the initial expressions remain unchanged.

If no further restrictions are imposed, then M→�
1 ;M�→•

2 counts the call-by-name
steps of M1 ;M2, rather than call-by-need steps, because information about sharing
is lost in the annotated output tree. An easy way to circumvent this would be to
restrict input programs to be linear, so that no sharing can occur. In fact, this is
what is typically done in efficiency arguments about classical deforestation, and it
also underlies the results from [Küh99]. But the particular recursion scheme of mtts
allows for more liberal conditions to be used here. Since the difference between call-
by-name and call-by-need shows only in situations where a call-by-name step would
duplicate a subexpression containing a function call by substituting it for several
occurrences of the same variable in the right-hand side of a rewrite rule, it suffices
to outlaw such situations. With respect to potential duplication of calls nested in
context parameter positions of other calls, this can obviously be done by requiring
both M1 and M2 to be context-linear or basic. To avoid potential duplication of
calls to states of M1 that appear in a partially evaluated intermediate result which is
recursed by M2, we additionally impose recursion-linearity on the latter. Under the
combined restrictions we obtain the following, corresponding to Lemma 2 in [Voi02].
Recall that | � |• is a function returning the number of •-symbols in a tree.
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Lemma 4.3 (M→�
1 ;M�→•

2 counts the call-by-need steps of M1 ;M2)
If M1 is context-linear or basic and M2 is atmost, then:

cbnM1;M2
= τM→�

1
; τM�→•

2
; | � |•.

In [Voi04a] a formal proof is given by explicitly defining call-by-name reduction (in
Section 4.1), establishing that τM→�

1
; τM�→•

2
; | � |• computes exactly the number of

steps in a call-by-name reduction of the original program for a particular input (in
Lemma 4.5), and showing that for context-linear or basic M1 and atmost M2 no
duplication of function calls can take place during such a reduction (in Section 4.9).
Since those definitions and proofs hold no big surprises, we omit them here and
leave it at the intuitive arguments above. The reader wanting to follow up on the
development in [Voi04a] (or [Voi05]), however, should note that there the cbnM1;M2

-
and cbnM1;M2

-functions refer to call-by-name rather than call-by-need reduction.
A further (somewhat subtle) point to note is that both in the case of call-by-name
and in the case of call-by-need reduction we count steps performed starting with an
instantiation of eM2

[v1
� − eM1

]. One could argue that this is not entirely appropriate
in the call-by-need case because the substitution of eM1

for v1 leads to copies of the
former if eM2

contains several occurrences of v1, thus forgoing potential benefit from
sharing. This could be circumvented by revising the definition of recursion-linearity,
and thus also the definition of atmostness, by additionally imposing linearity of
the initial expression in the input variable. For harmony and simplicity, we refrain
from doing so or replacing the “textual substitution” in eM2

[v1
� − eM1

] with a
shared representation. On the formal side, this is correct because for cbnM1;M2

as
defined in the present paper Lemma 4.3 holds without additional provisos. On the
practical side, the issue is a non-issue because a compiler will usually only apply
the transformation starting with initial expressions containing exactly one call from
each mtt, anyway. (For example, this is what the implementation [Reu03] does.)

Example 4.4 (counting call-by-need steps for the running example)
According to Definition 4.2, the mtts M→�

spine and M�→•
pfx have rules

R→�
spine : f1 (α u1) y1 → � (α (f1 u1 y1)) f2 (α u1) y1 y2 → � (α (f1 u1 (δ y1 y2)))

f1 (β u1) y1 → � (f2 u1 y1 (β ε)) f2 (β u1) y1 y2 → � (f2 u1 y1 (β (β y2)))
f1 ε y1 → � y1 f2 ε y1 y2 → � (δ y1 y2)

and

R�→•
pfx : g (δ v1 v2) z1 → • (δ (g v1 (g v2 z1)))

g (α v1) z1 → • (α (g v1 z1))
g (β v1) z1 → • (β (g v1 z1))
g ε z1 → • (ε z1)
g (� v1) z1 → • (g v1 z1)

respectively. Figure 5 shows an example computation using these annotated rules,
starting from the same input as in Figure 3. Recall that the notation •n stands
for the n-fold composition of • (in its interpretation as a function on trees). Then,
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note that the number of •-symbols in the final output is the same as the number
of call-by-need reduction steps required in Figure 3. Further note that, of course,
this final output is independent of the chosen reduction strategy: any other order
of applying rules from R→�

spine and R�→•
pfx would have yielded exactly the same normal

form!
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Figure 5: Reduction sequence using ⇒R→�

spine∪R�→•

pfx
.

For the composed program things are simpler than above because it consists of only
a single mtt, so no propagation of annotated symbols from an intermediate to the
final result is necessary, and because we can be satisfied with obtaining a pessimistic
approximation of its computation cost. By just putting another special symbol on
top of the right-hand side of every rule of M1;M2 we obtain the following.

Definition 4.5 (M1;M2
→◦

)
The mtt M1;M2

→◦
= (H,Σ,Ω ∪ {nil , ◦}, eM1;M2

, R1;R2
→◦

) has rules as follows:

R1;R2
→◦

:
h (σ u1 · · ·up) · · · → ◦ rhsM1;M2,h,σ ∀h ∈ H, σ ∈ Σ(p)

where on the left-hand sides the same context variables occur (in the same order)
as in the corresponding rules of M1;M2.

Again, τM1;M2

→◦ ; | � |◦ computes exactly the number of call-by-name steps per-
formed by the composed program for a particular input (cf. Lemma 4.8 of [Voi04a]).
Note that this, of course, does not depend on the particular form of M1;M2 (e.g.,
also M→�

1 counts the call-by-name steps of M1). Since call-by-need always performs
at most as many reduction steps as a call-by-name strategy, we obtain the following.

Lemma 4.6 (M1;M2
→◦

approximates the call-by-need steps of M1;M2)
cbnM1;M2

≤ τM1;M2

→◦ ; | � |◦
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It seems appropriate to discuss the consequences of settling for an approximation
here. Since we essentially compare call-by-name efficiency of the composed program
to call-by-need efficiency of the original program, we clearly introduce a certain im-
precision into our analysis, but not more so than is the case in comparable efficiency
studies for other transformation techniques. In fact, it seems questionable whether
a more faithful analysis of the call-by-need efficiency of the composed program is
at all possible in general, given that the composition construction itself proceeds
intrinsically call-by-name and loses a certain amount of sharing that cannot be re-
covered without leaving the framework of mtts. However, it will often be the case
that the inequality from Lemma 4.6 turns into an equality. For the running exam-
ple it is indeed so, as is easy to see because the right-hand sides of the rules after
post-processing (given explicitly on page 15 of [Voi04a]) are linear in all variables.
We do not attempt here to track down conditions on the original program under
which we get an equational version of Lemma 4.6 because anyway we will see more
inequalities as the analysis proceeds. For most of those, in particular for the ones in
Lemmas 4.23, 4.24, 4.33, 4.35, 4.36, and 4.37, we have in [Voi04a] proved that equal-
ity holds under certain additional conditions. While this exercise served to develop
some sense of just how frequently the pessimistic approximations will manifest in
practice, it clearly does not allow for a single additional instance of tree transducer
composition to be flagged as efficiency nondeteriorating; hence, we will not repeat it
in the present paper. In conclusio: (i) for showing that a composed program is more
efficient than the original one, a count based on inequalities (in the proper direction)
is sufficient, and (ii) the primary concern when evaluating the usefulness of sufficient
conditions is how many typical examples they cover in practice. In Section 5.2 we
will argue that our efficiency analysis fares pretty well in the latter respect.

4.3 Pushing annotation through composition

Through the characterization of cbnM1;M2
and cbnM1;M2

in terms of τM→�

1
, τM�→•

2
, and

τM1;M2

→◦ we have freed ourselves from concerns about a particular reduction strategy.
Since the tree transduction induced by an mtt is defined without imposing any policy
on reductions computing the normal forms of instantiations of its initial expression,
we can reason about the outputs generated by the mtts M→�

1 , M�→•
2 , and M1;M2

→◦

with much more ease than about the lengths of specific reduction sequences involving
M1, M2, and M1;M2. The externalization will thus prove fruitful.

One hurdle for analyzing the relation between the number of ◦-symbols produced
by M1;M2

→◦
and the number of •-symbols produced by M→�

1 followed by M�→•
2 is

that the rule structure of the former mtt seems rather unconnected to that of the
latter two on first sight. But of course, there is a tight connection in that M→�

1

and M�→•
2 are annotated versions of the original mtts M1 and M2 while M1;M2

→◦

was obtained by annotating the rules produced by our composition construction,
given those original mtts as input. The most promising approach to exploit this
connection is by trying to get an alternative perspective on M1;M2

→◦
: rather than

viewing it as an annotated version of the composed mtt, can we also view it as the
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composition of annotated versions of the original mtts? This would allow us to shift
further attention completely to the level of (annotations of) the original program,
after all the base on which we aim to formulate sufficient conditions.

The quest for appropriately annotated versions of M1 and M2 whose compo-
sition according to Construction 3.1 would differ from M1;M2 essentially only by
having an added ◦-symbol on top of every non-nil rule right-hand side (while the
effect on rules with the dummy symbol nil as right-hand side does not need to meet
any particular criteria, given that these rules are irrelevant for the composed mtt’s
computation) required a more thorough analysis of the internal workings of the com-
position construction and the interplay between its ingredients than the necessarily
cursory explanations in Section 3. The result, however, is surprisingly simple and
elegant, and comes with a pretty straightforward proof that it indeed has the desired
characteristic. Moreover, it sheds new light on the roles of the states of M1;M2.

Recall that a state fg of M1;M2 essentially computes the output of state g of M2

run on an intermediate result produced by state f of M1. It consumes its recursion
input with the same granularity as f does, namely by pattern-matching against the
root symbol. Hence, to chart steps of fg in terms of the original program, it makes
sense to mark portions of the intermediate result produced by a single step of f
(reusing the �-symbol):

f (σ u1 · · ·up) y1 · · ·yr → � (· · ·)

and to record the consumption of such a portion by g as follows in the final output:

g (� v1) z1 · · · zs → ◦ (g v1 z1 · · · zs).

So far, the approach is the same as in [Voi02] for the special case that one of the
involved mtts is a tdtt; but for kf lg′-states, which were not present in that special
case, things become considerably more intricate. These states are used to determine
the values of context parameters of M2’s state g′ on reaching the positions of context
parameters of M1’s state f in an intermediate result produced by f for a given input.
To model such behavior, we explicitly record positions in the intermediate result
where a context parameter of f was used by marking all context variables in right-
hand sides of rules for f with yet another dedicated symbol ?. The cost associated
in the composed program with accessing a context parameter of g ′ on a thus marked
context parameter of a state of M1 is reflected by adding the following rule:

g′ (? v1) z1 · · · zs′ → g′ v1 (◦ z1) · · · (◦ zs′).

Its effect is illustrated in Figure 6; compare that to Figure 2. The chosen scheme
ensures that if some of the context parameters of g ′ are not required for its compu-
tation on a concrete instantiation of v1, e.g. on φk in the figure, then the ◦-symbols
stored in the corresponding positions will not be included in the final count as they
will be discarded along with the values they mark. That this is exactly what we want
hinges on the fact that a kf lg′-computation is necessary only if the corresponding
value is really required in the replacement (2) for (1) in Section 3.

Summarizing, we obtain the following annotated versions of M1 and M2.
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Figure 6: Effects of the ?-annotation and associated rules for the second mtt.

Definition 4.7 (M→�?
1 and M�?→◦

2 )
The mtts M→�?

1 = (F,Σ,∆ ∪ {�, ?}, eM1
, R→�?

1 ) and M�?→◦
2 = (G,∆ ∪ {�, ?},Ω ∪

{◦}, eM2
, R�?→◦

2 ) have rules as follows:

R→�?
1 :
f (σ u1 · · ·up) y1 · · · yr → � rhsM1,f,σ[yk

� − ? yk | k ∈ [r]] ∀f ∈ F (r+1), σ ∈ Σ(p)

R�?→◦
2 :
g (δ v1 · · · vq) z1 · · · zs → rhsM2,g,δ ∀g ∈ G(s+1), δ ∈ ∆(q)

g (� v1) z1 · · · zs → ◦ (g v1 z1 · · · zs) ∀g ∈ G(s+1)

g (? v1) z1 · · · zs → g v1 (◦ z1) · · · (◦ zs) ∀g ∈ G(s+1)

Note that M→�?
1 is a tdtt iff M1 is; likewise for context-linearity. Further, M �?→◦

2 is
a tdtt iff M2 is; likewise for weakly single-useness.

By the remarks in Definition 4.7, applicability of Construction 3.1 to M1 and M2

implies its applicability also to M→�?
1 and M�?→◦

2 , yielding the mtt M→�?
1 ;M�?→◦

2 =
(H,Σ,Ω ∪ {nil , ◦}, eM→�?

1
;M�?→◦

2

, R→�?
1 ;R�?→◦

2 ), which we aim to show equivalent to

M1;M2
→◦

. Note that the state set of M→�?
1 ;M�?→◦

2 is the same H as for M1;M2

(and thus for M1;M2
→◦

) because its definition in Construction 3.1 depends only on
F and G. Likewise, the nestf -functions and the rewrite systems Pre and Pair are
unchanged between the two applications of the composition construction to M1 and
M2, respectively to M→�?

1 and M�?→◦
2 , assuming the same ordering of states in G is

used in both cases. The following two auxiliary lemmas study the (non-)impact of
the differences which do exist between the rule sets of the mtts involved in those two
invocations of the composition construction on certain computations to be performed
when constructing the rule right-hand sides for the composed program.

Lemma 4.8 (auxiliary)
For every f ∈ F (r+1), g ∈ G(s+1), and σ ∈ Σ:

nf (⇒R�?→◦

2
∪Pre∪Pair , g rhsM1,f,σ[yk

� − ? yk | k ∈ [r]] z1 · · · zs)
= nf (⇒R2∪Pre∪Pair , g rhsM1,f,σ z1 · · · zs).

The proof, which can be found in the appendix, relies on the facts that, for every δ ∈
∆, the δ-rules do not differ between R�?→◦

2 and R2, that rhsM1,f,σ[yk
� − ? yk | k ∈ [r]]

contains no �-symbols, that it contains ?-symbols only atop context variables yk, and
that a reduction g (? yk) %1 · · · %s ⇒R�?→◦

2
g yk (◦ %1) · · · (◦ %s) ⇒Pre yk,g for arbitrary
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g, yk, and %1, . . . , %s has the same outcome as a ⇒Pre-reduction for a corresponding
call to g on (unannotated) yk.

Lemma 4.9 (auxiliary)
For every f ∈ F (r+1), g ∈ G(s+1), σ ∈ Σ, π ∈ paths(rhsM1,f,σ) with lab(rhsM1,f,σ, π) ∈
Yr, and l ∈ [s]:

nf (⇒R�?→◦

2
∪Pre∪Pair , parM�?→◦

2
,rhsM→�?

1
,f,σ

(1π, g, l))

= nf (⇒R2∪Pre∪Pair , parM2,rhsM1,f,σ
(π, g, l)).

The proof can be found in the appendix. Beside the facts that, for every δ ∈ ∆,
the δ-rules are the same in R�?→◦

2 and R2, that no ?-symbols occur between the
root of rhsM→�?

1
,f,σ = � rhsM1,f,σ[yk

� − ? yk | k ∈ [r]] and the ?-symbol at path 1π,
and that the use of substitution � [yk

� − ? yk | k ∈ [r]] makes for no difference
between computations using states from G with reduction relations ⇒R�?→◦

2
∪Pre∪Pair

and ⇒R2∪Pre∪Pair , respectively (as in Lemma 4.8), the key is that the recursive calls
in R�?→◦

2 -rules at � are performed with unchanged context parameters.
We can now show that except for rules whose right-hand side is nil the mtts

M→�?
1 ;M�?→◦

2 and M1;M2
→◦

are syntactically the same, taking into account that by
Definition 4.5 the initial expression of the latter mtt is eM1;M2

and that by Construc-

tion 3.1 and Definition 4.7 the left-hand sides of the rules in R→�?
1 ;R�?→◦

2 coincide
with the left-hand sides of the R1;R2-rules and thus by Definition 4.5 also with those
of the R1;R2

→◦
-rules, i.e., not only the state set H and input symbol alphabet Σ,

but also the recursion and context variables used are identical between the rule sets.

Lemma 4.10 (M→�?
1 ;M�?→◦

2 and M1;M2
→◦

are equal up to dummy rules)

1. eM→�?
1

;M�?→◦

2

= eM1;M2

2. For every h ∈ H and σ ∈ Σ, if rhsM→�?
1

;M�?→◦

2
,h,σ is not nil , then it is equal to

rhsM1;M2

→◦

,h,σ.

Proof

1. By Construction 3.1 and Definition 4.7 we have eM→�?
1

;M�?→◦

2

= nf (⇒R�?→◦

2
∪Pair

, eM2
[v1

� − eM1
]) and eM1;M2

= nf (⇒R2∪Pair , eM2
[v1

� − eM1
]). Since eM2

[v1
� −

eM1
] ∈ TF∪G∪∆∪Ω(U1) contains no �- or ?-symbols and since, for every δ ∈ ∆,

the δ-rules in R�?→◦
2 coincide with those in R2 by Definition 4.7, the two normal

forms are equal.

2. By case analysis on h ∈ H:

Case a: h = fg for some f ∈ F (r+1) and g ∈ G(s+1). Then:

rhsM→�?
1

;M�?→◦

2
,fg,σ

= (by Construction 3.1 and Definition 4.7)

nf (⇒R�?→◦

2
∪Pre∪Pair , g (� rhsM1,f,σ[yk

� − ? yk | k ∈ [r]]) z1 · · · zs)

= (by ⇒R�?→◦

2
, using that rhsM�?→◦

2
,g,� = ◦ (g v1 z1 · · · zs))
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◦ nf (⇒R�?→◦

2
∪Pre∪Pair , g rhsM1,f,σ[yk

� − ? yk | k ∈ [r]] z1 · · · zs)

= (by Lemma 4.8)

◦ nf (⇒R2∪Pre∪Pair , g rhsM1,f,σ z1 · · · zs)

= (by Definition 4.5 and Construction 3.1)

rhsM1;M2

→◦

,fg,σ

Case b: h = kf lg for some f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], and l ∈ [s]. Note
that rhsM→�?

1
,f,σ = � rhsM1,f,σ[yk′

� − ? yk′ | k′ ∈ [r]] by Definition 4.7.

− If rhsM1,f,σ does not contain the context variable yk, then neither does
rhsM→�?

1
,f,σ, hence rhsM→�?

1
;M�?→◦

2
,kf lg ,σ = nil by Construction 3.1.

− Otherwise, if lab(rhsM1,f,σ, π) = yk—and thus sub(rhsM→�?
1

,f,σ, 1π) =
? yk—for some π ∈ paths(rhsM1,f,σ), then:

rhsM→�?
1

;M�?→◦

2
,kf lg ,σ

= (by Construction 3.1)

nf (⇒R�?→◦

2
∪Pre∪Pair , parM�?→◦

2
,rhsM→�?

1
,f,σ

(1π1, g, l))

= (by definition of parM�?→◦

2
,rhsM→�?

1
,f,σ

, using that

rhsM�?→◦

2
,g,? = g v1 (◦ z1) · · · (◦ zs))

nf (⇒R�?→◦

2
∪Pre∪Pair , ◦ parM�?→◦

2
,rhsM→�?

1
,f,σ

(1π, g, l))

= (by Lemma 4.9)

◦ nf (⇒R2∪Pre∪Pair , parM2,rhsM1,f,σ
(π, g, l))

= (by Definition 4.5 and Construction 3.1)

rhsM1;M2

→◦

,kf lg ,σ

Using Lemma 4.10 and the fact that M→�?
1 ;M�?→◦

2 was obtained by our semantics-
preserving composition construction from M→�?

1 and M�?→◦
2 , we can express the

semantics of M1;M2
→◦

directly in terms of the semantics of these annotated versions
of the original mtts.

Lemma 4.11 (M→�?
1 ;M�?→◦

2 simulates M1;M2
→◦

)
τM1;M2

→◦ = τM→�?
1

; τM�?→◦

2

Proof
The lemma follows from an instantiation of Theorem 3.2,

τM→�?
1

;M�?→◦

2

= τM→�?
1

; τM�?→◦

2
: TΣ −→ TΩ∪{◦} ,

if for every t ∈ TΣ we can show that

τM→�?
1

;M�?→◦

2

(t) = nf (⇒R→�?
1

;R�?→◦

2

, eM→�?
1

;M�?→◦

2

[u1
� − t])

is equal to
τM1;M2

→◦(t) = nf (⇒R1;R2

→◦, eM1;M2
[u1

� − t]).

Since the range of τM→�?
1

;M�?→◦

2

contains no trees with nil -symbols, the former normal

form can be obtained by applying only rules from R→�?
1 ;R�?→◦

2 whose right-hand side
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is not equal to nil . (As, in particular, in a call-by-name reduction sequence applica-
tion of a rule with right-hand side nil would lead to an output tree containing nil .)
But by Lemma 4.10(2) all rules from R→�?

1 ;R�?→◦
2 with non-nil right-hand side are

identically in R1;R2
→◦

, which implies eM→�?
1

;M�?→◦

2

[u1
� − t] ⇒∗

R1;R2

→◦ τM→�?
1

;M�?→◦

2

(t).

Hence, the desired equality follows from Lemma 4.10(1) and the fact that no rules
from R1;R2

→◦
are applicable to an element of TΩ∪{◦}.

The previous lemma (in combination with Lemma 4.6) implies that we do not even
need to perform Construction 3.1 to analyze the efficiency of a composed program
resulting from it. While the externalization by annotation in the previous subsection
freed us from further concerns about the specifics of call-by-need reduction, we have
thus eliminated any necessity to consider the composition construction itself in the
further development.

Example 4.12 (counting steps for composed program in running ex.)
The number of ◦-symbols produced using the rules in R→�?

spine and R�?→◦
pfx in the ex-

ample computation in Figure 7 is the same as the number of call-by-need reduction
steps required in Figure 4 for the same input. In general we will only have a (pes-
simistic) approximation of the number of steps of the composed program, but for
the running example we actually get an exact measure (cf. the discussion below
Lemma 4.6).
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Figure 7: Reduction sequence using ⇒R→�?
spine∪R�?→◦

pfx
.

4.4 Combining annotations, and a first efficiency result

Summarizing the results from the previous two subsections, M→�?
1 ;M�?→◦

2 pes-
simistically approximates the number of call-by-need steps of the composed program
while, for context-linear or basic M1 and atmost M2, M

→�
1 ;M�→•

2 counts exactly
the call-by-need steps of the original program. In the remainder of the analysis
we are seeking sufficient conditions on a pair of mtts M1 and M2 under which the
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number of ◦-symbols in the output of M→�?
1 ;M�?→◦

2 is less than or equal to the
number of •-symbols in the output of M→�

1 ;M�→•
2 (plus some small constant) for

every input. To compare those numbers it is clearly beneficial to work with only
one annotated version for each of M1 and M2. Quite naturally, “overlaying” the
different annotation schemes leads to the following rules for f ∈ F (r+1), σ ∈ Σ(p),
g ∈ G(s+1), and δ ∈ ∆(q):

f (σ u1 · · ·up) y1 · · · yr → � rhsM1,f,σ[yk
� − ? yk | k ∈ [r]]

g (δ v1 · · · vq) z1 · · · zs → • rhsM2,g,δ

g (� v1) z1 · · · zs → ◦ (• (g v1 z1 · · · zs))
g (? v1) z1 · · · zs → g v1 (◦ z1) · · · (◦ zs)

Since we are only interested in whether there are more occurrences of one of the
symbols ◦ and • than of the other, rather than in their absolute numbers, the
adjacent ◦ and • in the g-rules at � can be omitted. Since the new g-rules at
� will simply delete any �-symbols appearing in the intermediate result, we can
equivalently annotate as follows:

f (σ u1 · · ·up) y1 · · · yr → rhsM1,f,σ[yk
� − ? yk | k ∈ [r]]

g (δ v1 · · · vq) z1 · · · zs → • rhsM2,g,δ

g (? v1) z1 · · · zs → g v1 (◦ z1) · · · (◦ zs)

For the later analysis it will be beneficial to keep the δ-rules unchanged from M2,
i.e. devoid of any annotation. To achieve this, we instead of producing a •-symbol
whenever such a rule is applied arrange for every δ ∈ ∆ in the intermediate result
to be explicitly marked with a •-symbol that is then reproduced separately using
appropriate new rules. This leads to the annotated versions of M1 and M2 given
below. Regarding the notation • · δ, recall that • and δ can be interpreted as
functions on (tuples of) trees and that · is standard function composition, i.e., • · δ
for a symbol δ of rank q maps trees (t1, . . . , tq) to • (δ t1 · · · tq). Hence, the second-
order substitution � [δ � �− • · δ | δ ∈ ∆] realizes exactly the addition of a •-symbol
above every symbol from ∆ in a tree.

Definition 4.13 (M→?•
1 and M?•→◦•

2 )
The mtts M→?•

1 = (F,Σ,∆∪ {?, •}, eM→?•
1

, R→?•
1 ) and M?•→◦•

2 = (G,∆∪ {?, •},Ω∪
{◦, •}, eM2

, R?•→◦•
2 ) are given as follows:

R→?•
1 :
f (σ u1 · · ·up) y1 · · · yr → rhsM1,f,σ[δ � �− • · δ | δ ∈ ∆]

[yk
� − ? yk | k ∈ [r]]

∀f ∈ F (r+1), σ ∈ Σ(p)

eM→?•
1

= eM1
[δ � �− • · δ | δ ∈ ∆]

R?•→◦•
2 :
g (δ v1 · · · vq) z1 · · · zs → rhsM2,g,δ ∀g ∈ G(s+1), δ ∈ ∆(q)

g (? v1) z1 · · · zs → g v1 (◦ z1) · · · (◦ zs) ∀g ∈ G(s+1)

g (• v1) z1 · · · zs → • (g v1 z1 · · · zs) ∀g ∈ G(s+1)

Note that M ?•→◦•
2 is context-linear iff M2 is.



28 Formal efficiency analysis

To show that the output computed by M→?•
1 ;M?•→◦•

2 correctly reflects the difference
between the number of ◦-symbols produced by M→�?

1 ;M�?→◦
2 on the one hand and

the number of •-symbols produced by M→�
1 ;M�→•

2 on the other, we first need two
auxiliary lemmas. The statements of both lemmas use the second-order substitutions

� [? � �− id ] and � [� � �− id ] to express deletion of ?- and �-symbols, respectively, in a
tree. The second lemma is formulated using the function | � |◦−• = | � |◦ − | � |•.

Lemma 4.14 (auxiliary for M1)
For every t ∈ TΣ:

1. τM→�

1
(t) = τM→�?

1
(t)[? � �− id ]

2. τM→?•
1

(t) = τM→�?
1

(t)[� � �− id ][δ � �− • · δ | δ ∈ ∆].

Proof
Point 1 is immediate from the facts that M→�?

1 and M→�
1 have the same ini-

tial expression containing no ?-symbols and that for every f ∈ F and σ ∈ Σ,
rhsM→�

1
,f,σ = rhsM→�?

1
,f,σ[? � �− id ]. Similarly, point 2 follows from the facts that

eM→?•
1

can be obtained from the initial expression of M→�?
1 (eM1

, containing no �-
symbols) via the substitutions [� � �− id ][δ � �− • · δ | δ ∈ ∆] and that for every f ∈ F
and σ ∈ Σ, rhsM→?•

1
,f,σ = rhsM→�?

1
,f,σ[�

� �− id ][δ � �− • · δ | δ ∈ ∆].

Lemma 4.15 (auxiliary for M2)
For every t′ ∈ T∆∪{�,?}:

|τM�?→◦

2
(t′)|◦ − |τM�→•

2
(t′[? � �− id ])|• = |τM?•→◦•

2
(t′[� � �− id ][δ � �− • · δ | δ ∈ ∆])|◦−•.

The proof can be found in the appendix; it holds no big surprises. Plugging the two
auxiliary lemmas together, we obtain the following.

Lemma 4.16 (M→?•
1 ;M?•→◦•

2 counts the difference of ◦- and •-symbols)
(τM→�?

1
; τM�?→◦

2
; | � |◦) − (τM→�

1
; τM�→•

2
; | � |•) = τM→?•

1
; τM?•→◦•

2
; | � |◦−•

Proof
For every t ∈ TΣ we calculate:

|τM�?→◦

2
(τM→�?

1
(t))|◦ − |τM�→•

2
(τM→�

1
(t))|•

= (by Lemma 4.14(1))

|τM�?→◦

2
(τM→�?

1
(t))|◦ − |τM�→•

2
(τM→�?

1
(t)[? � �− id ])|•

= (by Lemma 4.15 with t′ = τM→�?
1

(t))

|τM?•→◦•

2
(τM→�?

1
(t)[� � �− id ][δ � �− • · δ | δ ∈ ∆])|◦−•

= (by Lemma 4.14(2))

|τM?•→◦•

2
(τM→?•

1
(t))|◦−•

Example 4.17 (instantiation of Lemma 4.16 to the running example)
Compare the output computed using the rules in R→?•

spine and R?•→◦•
pfx (and the new

initial expression eM→?•
spine

= f1 u1 (• ε), cf. Definition 4.13) in Figure 8 to that from

Figures 5 and 7 (for the same input). As before, there is one more •-symbol than
there are ◦-symbols.
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Figure 8: Reduction sequence using ⇒R→?•
spine∪R?•→◦•

pfx
.

It is easy to see that the output computed by M→?•
1 ;M?•→◦•

2 will contain no ◦-
symbols if one of the two mtts involved is a tdtt. This yields a first useful result
of our efficiency analysis, albeit for very special cases. It corresponds to Theorem 1
of [Voi02], except for the different formalization of initial expressions in that paper.
Since part of the proof will be of further use later, we channel it into an extra lemma
first, obtained by a straightforward combination of Lemmas 4.3, 4.6, 4.11, and 4.16.

Lemma 4.18 (intermediate wrap-up)
If M1 is context-linear or basic and M2 is atmost, then:

cbnM1;M2
− cbnM1;M2

≤ τM→?•
1

; τM?•→◦•

2
; | � |◦−•.

Theorem 4.19 (efficiency nondeterioration if M1 or M2 is a tdtt)
If M1 is a tdtt and M2 is atmost, or if M1 is context-linear or basic and M2 is a
linear tdtt, then:

cbnM1;M2
≤ cbnM1;M2

.

Proof
Lemma 4.18 (using the preconditions on M1 and M2) implies that for every t ∈ TΣ:

cbnM1;M2
(t) ≤ cbnM1;M2

(t) + |τM?•→◦•

2
(τM→?•

1
(t))|◦ − |τM?•→◦•

2
(τM→?•

1
(t))|•.

The only possibility for τM?•→◦•

2
(τM→?•

1
(t)) to contain ◦-symbols is via applications

of ?-rules of M ?•→◦•
2 . If M1 is a tdtt, then τM→?•

1
(t) contains no ?-symbols because

there are no context variables in M1’s rule right-hand sides in this case. If M2 is a
tdtt, then the ?-rules of M ?•→◦•

2 produce no ◦-symbols at all because G = G(1) in this
case. In both cases we obtain |τM?•→◦•

2
(τM→?•

1
(t))|◦ = 0. Since |τM?•→◦•

2
(τM→?•

1
(t))|•

is always nonnegative, the theorem follows.
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4.5 Unifying the treatment of ◦- and •-symbols

For the general case, i.e. when neither of the two mtts to be composed is a tdtt, we
have reduced the analysis problem to comparing—for each input—the numbers of ◦-
and •-symbols appearing in the final output produced by M→?•

1 ;M?•→◦•
2 . While the

emergence of •-symbols by adding one atop every symbol from ∆ in the intermediate
result and then simply reproducing them using rules

g (• v1) z1 · · · zs → • (g v1 z1 · · · zs)

for g ∈ G(s+1) is already quite handy, the completely different manner in which
◦-symbols are produced, namely through rules of the form

g (? v1) z1 · · · zs → g v1 (◦ z1) · · · (◦ zs) (4)

from ?-symbols in the intermediate result, is somewhat unwieldy. Clearly, it would
facilitate the comparison if ◦-symbols were also to appear directly in right-hand
sides of rules of the first mtt and to be reproduced by the second mtt using rules
analogous to the ones for •. A first step in that direction is to move all ◦-symbols out
of the context parameter positions in ?-rules as in the following replacement for (4):

g (? v1) z1 · · · zs → ◦ (· · · ◦
︸ ︷︷ ︸

s times

(g v1 z1 · · · zs) · · ·) (5)

We have to be careful, though, because this might change the total number of ◦-
symbols produced. If, for example, g (called on a concrete instantiation of v1) deletes
one of its context parameters, then the ◦-symbol in that position in the right-hand
side of (4) is discarded while the corresponding outwards moved symbol in (5) is
unnecessarily counted. Conversely, if g copies one of its context parameters, then a
◦-symbol that is rightfully counted several times when using (4) is counted only once
when using (5) instead. While overestimating the number of ◦-symbols and thus
the number of call-by-need steps performed by the composed program is acceptable
when looking for sufficient (rather than necessary) conditions guaranteeing efficiency
nondeterioration through our construction, any underestimation in that respect is
of course unsafe. It is avoided by performing the replacement of (4) with (5) only if
M?•→◦•

2 is context-linear.
The next step is to directly have sequences of ◦-symbols instead of single ?-

symbols in the right-hand sides of rules of the first mtt and to reproduce those
◦-symbols one by one with an appropriate rule of the second mtt. Since states in
G can have different numbers of context parameters, to be on the safe side we have
to replace every ? by smax times ◦, where smax is the maximal such number. This
yields for every f ∈ F (r+1) and σ ∈ Σ(p) the following rule:

f (σ u1 · · ·up) y1 · · · yr → rhsM1,f,σ[δ
� �− • · δ | δ ∈ ∆][yk

� − ◦smax yk | k ∈ [r]].

In the next subsection our analysis will proceed by finding conditions under which
pairs of ◦- and •-symbols appearing in one and the same annotated rule right-hand
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side of M1 can be caused to cancel each other out without compromising safety. To
gain flexibility in that endeavor, it would be beneficial if the ◦-symbols in question
were not always fixed to appear cascaded above all context variables. Without
changing the computed annotated intermediate result (as proved in Lemma 4.22
below), this can be achieved by, e.g., moving some of the smax ◦-symbols from the
top of all occurrences of context variable yk in every right-hand side for f to the
kth context parameter position of every call to f throughout right-hand sides and
the initial expression. To provide for maximal freedom of choice, the amount of
◦-symbols to be relocated thus can differ for different f and k, as modeled in the
following definition through parameterization over the mapping κ. Regarding the
second-order substitution � [f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)], recall
the explanation of � [δ � �− • · δ | δ ∈ ∆] above Definition 4.13 and the fact that × is
used to denote the Cartesian product of functions, so that f ′ ·(id×◦κf ′,1 ×· · ·×◦κf ′,r′ )
for f ′ ∈ F (r′+1) maps trees (t, t1, . . . , tr′) to f ′ t (◦κf ′,1 t1) · · · (◦κf ′,r′ tr′).

Definition 4.20 (M→◦•,κ
1 and M◦•→◦•

2 )
Let smax = max(rank(G)) − 1 and let κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→
{0, . . . , smax} be arbitrary. For every f ∈ F (r+1) and k ∈ [r] abbreviate κf,k = κ(f, k)
and κf,k = smax −κ(f, k). The mtts M→◦•,κ

1 = (F,Σ,∆∪{◦, •}, eM
→◦•,κ
1

, R→◦•,κ
1 ) and

M◦•→◦•
2 = (G,∆ ∪ {◦, •},Ω ∪ {◦, •}, eM2

, R◦•→◦•
2 ) are given as follows:

R→◦•,κ
1 :
f (σ u1 · · ·up) y1 · · · yr → rhsM1,f,σ

[δ � �− • · δ | δ ∈ ∆]
[f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]
[yk

� − ◦κf,k yk | k ∈ [r]]

∀f ∈ F (r+1), σ ∈ Σ(p)

eM
→◦•,κ
1

= eM1
[δ � �− • · δ | δ ∈ ∆][f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]

R◦•→◦•
2 :
g (δ v1 · · · vq) z1 · · · zs → rhsM2,g,δ ∀g ∈ G(s+1), δ ∈ ∆(q)

g (◦ v1) z1 · · · zs → ◦ (g v1 z1 · · · zs) ∀g ∈ G(s+1)

g (• v1) z1 · · · zs → • (g v1 z1 · · · zs) ∀g ∈ G(s+1)

Note that M ◦•→◦•
2 is recursion-linear iff M2 is; likewise for recursion-nondeleting,

context-linear and -nondeleting, basic, atmost, and atleast.

Example 4.21 (M→◦•,κ
spine for smax = 1 and a concrete κ)

Choose κ so that κf1,1 = κf2,2 = 1 and κf2,1 = 0. Then, the mtt M→◦•,κ
spine =

({f
(2)
1 , f

(3)
2 },Σmon ,∆tree ∪ {◦, •}, eM

→◦•,κ
spine

, R→◦•,κ
spine ) has the rules

R→◦•,κ
spine : f1 (α u1) y1 → • (α (f1 u1 (◦ y1)))

f1 (β u1) y1 → f2 u1 y1 (◦ (• (β (• ε))))
f1 ε y1 → y1

f2 (α u1) y1 y2 → • (α (f1 u1 (◦ (• (δ (◦ y1) y2)))))
f2 (β u1) y1 y2 → f2 u1 (◦ y1) (◦ (• (β (• (β y2)))))
f2 ε y1 y2 → • (δ (◦ y1) y2)

and the initial expression eM
→◦•,κ
spine

= f1 u1 (◦ (• ε)).
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To show that—irrespective of the choice of κ—the difference between the numbers
of ◦- and •-symbols in the output computed by M→◦•,κ

1 ;M◦•→◦•
2 for context-linear

M2 is greater than or equal to the corresponding difference in the output produced
by M→?•

1 ;M?•→◦•
2 , we first need two auxiliary lemmas.

Lemma 4.22 (auxiliary for M1)
For every κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→ {0, . . . , smax} and t ∈ TΣ:

τM→◦•,κ
1

(t) = τM→?•
1

(t)[? � �− ◦smax ].

The proof can be found in the appendix. The key observation is that when a call
f t (◦κf,1 y1) · · · (◦κf,r yr) is reduced using a rule from R→◦•,κ

1 , additional ◦-symbols
are put on top of each context parameter by applying ◦κf,k to (◦κf,k yk) for every
k ∈ [r]. Since κf,k + κf,k = smax for every k ∈ [r], this corresponds to the ◦smax

substituted eventually for the single ?-symbol put onto each context parameter when
reducing a call to f on t using a rule from R→?•

1 .

Lemma 4.23 (auxiliary for M2)
If M2 is context-linear, then for every t′ ∈ T∆∪{?,•}:

|τM?•→◦•

2
(t′)|◦−• ≤ |τM◦•→◦•

2
(t′[? � �− ◦smax ])|◦−•.

The proof can be found in the appendix. The key idea is to quantify how often
the ◦-symbols produced in a step g (? t′1) z1 · · · zs ⇒R?•→◦•

2
g t′1 (◦ z1) · · · (◦ zs)

will appear in the final output in terms of the number of occurrences of z1, . . . , zs in
nf (⇒R?•→◦•

2
, g t′1 z1 · · · zs)—which can be approximated using Lemma 2.5(1)—and

to compare this to the number of ◦-symbols produced when reducing a call to g on
(? t′1)[?

� �− ◦smax ] using (smax times) the rule for g at ◦ in R◦•→◦•
2 .

Plugging the two auxiliary lemmas together, we obtain the following.

Lemma 4.24 (M→◦•,κ
1 ;M◦•→◦•

2 computes a safe approximation)
If M2 is context-linear, then for every κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→
{0, . . . , smax}:

τM→?•
1

; τM?•→◦•

2
; | � |◦−• ≤ τM→◦•,κ

1

; τM◦•→◦•

2
; | � |◦−•.

Proof
For every t ∈ TΣ, |τM?•→◦•

2
(τM→?•

1
(t))|◦−• ≤ |τM◦•→◦•

2
(τM→◦•,κ

1

(t))|◦−• by Lemma 4.23
with t′ = τM→?•

1
(t) and Lemma 4.22.

Example 4.25 (instantiation of Lemma 4.24 to the running example)
To observe the effect of the transition from M→?•

1 and M?•→◦•
2 to M→◦•,κ

1 andM◦•→◦•
2

for the running example with the concrete κ from Example 4.21, compare the com-
putation in Figure 9 to that from Figure 8. In particular, note how as a consequence
of replacing (4) with (5), ◦-symbols have “floated upwards” in the computed output,
as indicated by the dashed arrows.
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Figure 9: Reduction sequence using ⇒R
→◦•,κ
spine ∪R◦•→◦•

pfx
.

4.6 Moving •-symbols to cancel out ◦-symbols

Our ultimate goal is now to put a constant upper bound, for every input, on the
difference between the numbers of ◦- and •-symbols reproduced by M ◦•→◦•

2 from an
intermediate result produced by some M→◦•,κ

1 . That could in principle be achieved
by correspondingly bounding only the number of ◦-symbols because the subtracted
number of •-symbols is always nonnegative. Clearly, it is unlikely that there is
indeed a constant upper bound for the number of ◦-symbols because the number
of applications of rules of M→◦•,κ

1 in whose right-hand sides such symbols appear
depends on the input, and so consequently does the number of ◦-symbols in the
final output. We would stand much better chances if all ◦-symbols were eliminated
from the rules of the mtt producing the annotated intermediate result. Fortunately,
we can make this happen by continuing to manipulate the first mtt’s annotation,
as long as this does not lead to an underestimation of the difference between the
numbers of ◦- and •-symbols. One obviously safe manipulation is to once again
remove pairs of adjacent ◦- and •-symbols. If such symbols do not appear next to
each other, we can attempt to first bring them closer together by moving either kind
of symbols. The following definition lists the sensible choices for moving •-symbols
around in annotated right-hand sides of rules of the first mtt. It turned out that
dually moving also ◦-symbols does not add strength to the analysis.

Definition 4.26 (symmetric up- and down-rules for •)
For every f ∈ F (r+1) and k ∈ [r] rewrite rules ↓f,k and ↑f,k, and for every δ ∈ ∆(q)

and j ∈ [q] rewrite rules ↓δ,j and ↑δ,j are given as follows:
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↓f,k : • (f u v1 · · · vr) → f u v1 · · · (• vk) · · ·vr

↑f,k : f u v1 · · · (• vk) · · ·vr → • (f u v1 · · · vr)
↓δ,j : • (δ v1 · · · vq) → δ v1 · · · (• vj) · · ·vq

↑δ,j : δ v1 · · · (• vj) · · ·vq → • (δ v1 · · · vq)

Such ↑- and ↓-rules cannot be applied unconstrained. If, for example, M ◦•→◦•
2 is

not recursion-linear, then the application of a ↓δ,j-rule to move a •-symbol below
an output symbol in the right-hand side of some rule of the first mtt—and as a
consequence also in the annotated intermediate result—can cause that •-symbol to
be counted more often after the manipulation than it was previously, in case the
jth recursion variable occurs more than once in some δ-rule of M2. That is, in the
presence of a rule

g (δ v1 v2) → ω (g v1) (g v1)

of M2 an application of the ↓δ,1-rule can have the effect that an ⇒R◦•→◦•

2
-reduction

g (• (δ θ1 θ2)) ⇒ • (g (δ θ1 θ2)) ⇒ • (ω (g θ1) (g θ1))

for some θ1, θ2 ∈ T∆∪{◦,•} is replaced by the following:

g (δ (• θ1) θ2) ⇒ ω (g (• θ1)) (g (• θ1)) ⇒
2 ω (• (g θ1)) (• (g θ1)) ,

thus overestimating the number of •-symbols. In addition to avoiding unlegitimate
duplication of a •-symbol through several recursive calls on the subtree into which
it was moved, also more subtle ways of duplication via context parameters must be
barred. If, for example, M2 has a rule

g (δ v1 v2) → g′ v1 (g v2) (6)

then an application of the ↓δ,2-rule can have the effect that an ⇒R◦•→◦•

2
-reduction

g (• (δ θ1 θ2)) ⇒ • (g (δ θ1 θ2)) ⇒ • (g′ θ1 (g θ2))

for some θ1, θ2 ∈ T∆∪{◦,•} is replaced by the following:

g (δ θ1 (• θ2)) ⇒ g′ θ1 (g (• θ2)) ⇒ g′ θ1 (• (g θ2)).

If g′ happens to copy its context parameter, then one •-symbol is turned into more
than one. To avoid this problem, we can either outlaw nested calls such as the one
in the right-hand side of (6), or require that context parameters are never copied.
Syntactic restrictions of mtts to these effects are (either of) basicness and context-
linearity from Definition 2.4; the proper combination with recursion-linearity to
guarantee a safe application of ↓δ,j-rules is given by what we dubbed atmost there.
Completely dually, M2 must be atleast in order to apply ↑δ,j-rules safely. In the
case of ↓f,k- and ↑f,k-rules for a state f ∈ F , we additionally need to require context-
linearity and -nondeletingness, respectively, of the first mtt to prevent unlegitimate
proliferation of •-symbols in the annotated intermediate result already. The follow-
ing definition captures the gained insights by specifying a permissible subset EM1,M2

of the possible rewrite rules for moving •-symbols and eliminating ◦-symbols.



4.6 Moving •-symbols to cancel out ◦-symbols 35

Definition 4.27 (EM1,M2
)

The rewrite system EM1,M2
contains the following rules:

• (◦ v) → v,

◦ (• v) → v,

↓f,k for every f ∈ F (r+1) and k ∈ [r] if M1 is context-linear and M2 is atmost,

↑f,k for every f ∈ F (r+1) and k ∈ [r] if M1 is context-nondeleting and M2 is atleast,

↓δ,j for every δ ∈ ∆(q) and j ∈ [q] if M2 is atmost, and

↑δ,j for every δ ∈ ∆(q) and j ∈ [q] if M2 is atleast.

Example 4.28 (EMspine ,Mpfx
, cf. Example 2.2)

Since Mspine is context-linear and context-nondeleting and Mpfx is atmost and atleast
(even linear and nondeleting), the rewrite system EMspine ,Mpfx

contains all potential
↓- and ↑-rules.

We will later allow the rewrite rules from EM1,M2
to be applied arbitrarily often to

rule right-hand sides, but also to the initial expression, of annotated versions of M1.
For the sake of proving that this indeed does not lead to an underestimation of the
difference between the numbers of ◦- and •-symbols in the final output, however, it
is more convenient to first consider at most one rewrite step on the initial expression
and each right-hand side. This is described by a relation ;EM1,M2

on a set containing
all M→◦•,κ

1 and all mtts possibly obtained from them via the rewrite rules in EM1,M2
.

Definition 4.29 (M→◦•
1 and ;EM1,M2

⊆ M→◦•
1 ×M→◦•

1 )
Let M→◦•

1 be the set of all mtts M = (F,Σ,∆ ∪ {◦, •}, e, R) for which e[◦, • � �−
id , id ] = eM1

and for every f ∈ F and σ ∈ Σ, rhsM,f,σ[◦, • � �− id , id ] = rhsM1,f,σ.
Note that every M→◦•

1 ∈ M→◦•
1 is context-linear iff M1 is; likewise for context-

nondeleting. For M→◦•
1 = (F,Σ,∆ ∪ {◦, •}, eM→◦•

1
, R→◦•

1 ) and M→◦•′

1 = (F,Σ,∆ ∪

{◦, •}, eM→◦•′

1

, R→◦•′

1 ) in M→◦•
1 we write M→◦•

1 ;EM1,M2
M→◦•′

1 if eM→◦•

1
⇒?

EM1,M2

e
M→◦•′

1

and for every f ∈ F and σ ∈ Σ, rhsM→◦•

1
,f,σ ⇒?

EM1,M2

rhs
M→◦•′

1
,f,σ

.

Example 4.30 (rewriting M→◦•,κ
spine from Example 4.21 with ;EMspine ,Mpfx

)

By rewriting the initial expression and each right-hand side of a rule of M→◦•,κ
spine

with at most one step of ⇒EMspine ,Mpfx
, we obtain M→◦•,κ

spine ;EMspine ,Mpfx
M→◦•′

spine =

({f
(2)
1 , f

(3)
2 },Σmon ,∆tree ∪ {◦, •}, f1 u1 (◦ (• ε)), R→◦•′

spine) with rules

R→◦•′

spine : f1 (α u1) y1 → • (α (f1 u1 (◦ y1)))
f1 (β u1) y1 → f2 u1 y1 (β (• ε))
f1 ε y1 → y1

f2 (α u1) y1 y2 → • (α (f1 u1 (◦ (δ (• (◦ y1)) y2))))
f2 (β u1) y1 y2 → f2 u1 (◦ y1) (◦ (• (β (• (β y2)))))
f2 ε y1 y2 → δ (• (◦ y1)) y2
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To show that rewriting an annotated version of M1 according to ;EM1,M2
does not

lead to a decrease in the difference between the numbers of ◦- and •-symbols repro-
duced by M◦•→◦•

2 from the annotated intermediate result, we first prove two lemmas.
The first one captures how the omission of •-symbols from an annotated interme-
diate result is reflected in the final output produced by a state of an atmost and of
an atleast M2, respectively. In fact, the properties given here motivated the choice
of names “atmost” and “atleast”. Note that the slightly counter-intuitive difference
in the orders in which θ and θ′ appear in the left- and right-hand sides of the given
inequations is caused by the fact that •-symbols are counted negatively by | � |◦−•

but positively by | � |•.

Lemma 4.31 (essential properties of atmost and atleast mtts, resp.)
For every θ, θ′ ∈ T∆∪{◦,•} with θ ⇒∗

{• v → v} θ
′ and every g ∈ G(s+1):

1. if M2 is atmost, then:
|nf (⇒R◦•→◦•

2
, g θ′ z1 · · · zs)|◦−• − |nf (⇒R◦•→◦•

2
, g θ z1 · · · zs)|◦−• ≤ |θ|• − |θ′|•

2. if M2 is atleast, then:
|nf (⇒R◦•→◦•

2
, g θ′ z1 · · · zs)|◦−•−|nf (⇒R◦•→◦•

2
, g θ z1 · · · zs)|◦−• ≥ |θ|•−|θ′|•.

The proof (using Lemma 2.5) can be found in the appendix. It uses | � |•−◦ =
| � |•−| � |◦ instead of | � |◦−• to later enable a “recycling” of the performed inductions
for the proof of Lemma 4.36.

Lemma 4.31 is used in the following lemma to establish in which sense the ↑- and
↓-rules we have chosen to put into EM1,M2

are permissible.

Lemma 4.32 (essential properties of the rewrite system EM1,M2
)

For every g ∈ G(s+1):

1. for every δ ∈ ∆(q), j ∈ [q], and θ1, . . . , θq ∈ T∆∪{◦,•}:

(a) if ↓δ,j ∈ EM1,M2
, then:

|nf (⇒R◦•→◦•

2
, g (δ θ1 · · · θq) z1 · · · zs)|◦−•

≤ 1 + |nf (⇒R◦•→◦•

2
, g (δ θ1 · · · (• θj) · · · θq) z1 · · · zs)|◦−•

(b) if ↑δ,j ∈ EM1,M2
, then:

|nf (⇒R◦•→◦•

2
, g (δ θ1 · · · θq) z1 · · · zs)|◦−•

≥ 1 + |nf (⇒R◦•→◦•

2
, g (δ θ1 · · · (• θj) · · · θq) z1 · · · zs)|◦−•

2. for every M→◦•
1 = (F,Σ,∆∪{◦, •}, eM→◦•

1
, R→◦•

1 ) ∈ M→◦•
1 , f ∈ F (r+1), k ∈ [r],

t ∈ TΣ, and θ1, . . . , θr ∈ T∆∪{◦,•}:

(a) if ↓f,k ∈ EM1,M2
, then:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, f t θ1 · · · θr) z1 · · · zs)|◦−•

≤ 1 + |nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, f t θ1 · · · (• θk) · · · θr) z1 · · · zs)|◦−•

(b) if ↑f,k ∈ EM1,M2
, then:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, f t θ1 · · · θr) z1 · · · zs)|◦−•

≥ 1 + |nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, f t θ1 · · · (• θk) · · · θr) z1 · · · zs)|◦−•.
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Proof
Since from ↓δ,j ∈ EM1,M2

follows that M2 is atmost, and from ↑δ,j ∈ EM1,M2
fol-

lows that M2 is atleast, the points 1a and 1b follow from Lemma 4.31 with θ =
δ θ1 · · · (• θj) · · · θq and θ′ = δ θ1 · · · θq, using that θ ⇒{• v → v} θ

′ and |θ|• − |θ′|• = 1.

Since from ↓f,k ∈ EM1,M2
follows that M1 is context-linear and M2 is atmost,

and from ↑f,k ∈ EM1,M2
follows that M1 is context-nondeleting and M2 is atleast, the

points 2a and 2b follow from Lemma 4.31 with θ = nf (⇒R→◦•

1
, f t θ1 · · · (• θk) · · · θr)

and θ′ = nf (⇒R→◦•

1
, f t θ1 · · · θr), using three auxiliary statements:

1. θ ⇒∗
{• v → v} θ

′,

2. |θ|• − |θ′|• ≤ 1 if M1, and hence also M→◦•
1 , is context-linear, and

3. |θ|• − |θ′|• ≥ 1 if M1, and hence also M→◦•
1 , is context-nondeleting.

These statements, in turn, follow immediately from the following equalities for θ
and θ′ (which hold due to Lemma 2.6 for the mtt M→◦•

1 ):

θ = nf (⇒R→◦•

1
, f t y1 · · ·yr)[y1, . . . , yr

� − θ1, . . . , • θk, . . . , θr]
θ′ = nf (⇒R→◦•

1
, f t y1 · · ·yr)[y1, . . . , yr

� − θ1, . . . , θr]

and Lemma 2.5 for the mtt M→◦•
1 .

Now, we are in a position to prove that rewriting according to ;EM1,M2
does not lead

to an unlegitimate underestimation of the number of ◦-symbols or overestimation of
the number of •-symbols.

Lemma 4.33 (applying ;EM1,M2
leads to a safe approximation)

Let M→◦•
1 ,M→◦•′

1 ∈ M→◦•
1 . If M→◦•

1 ;EM1,M2
M→◦•′

1 , then:

τM→◦•

1
; τM◦•→◦•

2
; | � |◦−• ≤ τM→◦•′

1

; τM◦•→◦•

2
; | � |◦−•.

The proof (using Lemma 4.32) can be found in the appendix. At its heart is an
analysis of the different ways in which a rule right-hand side or initial expression
of M→◦•

1 can be rewritten (or not) using ⇒?
EM1,M2

. This leads to eleven cases to

consider, but a lot of reuse is possible in resolving the associated proof obligations.

Example 4.34 (instantiation of Lemma 4.33 to the running example)
To observe the effect of the concrete application of ;EMspine ,Mpfx

in Example 4.30,

compare the computation in Figure 10 to that from Figure 9. In particular, note
how as a consequence of rewriting the right-hand side of the rule for f2 at ε, one
•-symbol has “floated downwards” in the computed output, as indicated by the
dashed arrow, and how the removal of adjacent ◦- and •-symbols in the right-hand
side of the rule for f1 at β has led to the elimination of one such pair also from the
computed output at the ×-marked position.
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Figure 10: Reduction sequence using ⇒
R→◦•′

spine ∪R◦•→◦•

pfx
.

4.7 Bounding the number of ◦-symbols

As motivated at the beginning of the previous subsection, we want to manipulate
some M→◦•,κ

1 (by eliminating ◦- and •-symbols via ;EM1,M2
) until we obtain an

M→◦•
1 ∈ M→◦•

1 for which we can put a constant upper bound on |τM◦•→◦•

2
(τM→◦•

1
(t))|◦

for every t ∈ TΣ. The most natural approach to establishing such an upper bound is
to first consider conditions under which the number of ◦-symbols in the intermediate
result τM→◦•

1
(t) is bounded. Requiring that no ◦-symbols occur anymore in right-

hand sides of rules ofM→◦•
1 is not quite enough because there might still be ◦-symbols

present in its initial expression. Hence, we additionally impose context-linearity
to be sure that such ◦-symbols are not duplicated during the computation. The
following lemma capturing this simple idea was proved in [Voi04a] (using Lemma 2.5
rather than the actual syntactic definition of context-linearity); here it is stated
without explicit proof.

Lemma 4.35 (bounding the number of ◦-symbols produced by M→◦•
1 )

Let M→◦•
1 = (F,Σ,∆ ∪ {◦, •}, eM→◦•

1
, R→◦•

1 ) ∈ M→◦•
1 . If the right-hand sides of the

rules in R→◦•
1 contain no ◦-symbols and M1 is context-linear, then for every t ∈ TΣ:

|τM→◦•

1
(t)|◦ ≤ |eM→◦•

1
|◦.

Given a constant bound for the number of ◦-symbols in τM→◦•

1
(t), we could obtain

a corresponding bound for τM◦•→◦•

2
(τM→◦•

1
(t)) if we knew that M ◦•→◦•

2 duplicates ◦-
symbols found in its input by at most a constant factor. One reason for unbounded
reproduction could be recursion-nonlinearity because then a given ◦-symbol could be
reached arbitrarily many times, depending on its depth in the input tree. Another
source for unbounded duplication could be that the output of a call that is nested
inside a context parameter position of another call is duplicated when the outer
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call copies its parameters. This can be avoided by requiring basicness or context-
linearity, just as we did in the previous subsection when discussing conditions for
the safe applicability of ↓δ,j-rules. In fact, the restriction to atmost mtts guarantees
that each ◦-symbol found in the input is reproduced in the output at most as many
times as the input is plugged into the initial expression of M ◦•→◦•

2 .

Lemma 4.36 (bounding the duplication of ◦-symbols through M ◦•→◦•
2 )

If M2 is atmost, then for every θ ∈ T∆∪{◦,•}:

|τM◦•→◦•

2
(θ)|◦ ≤ |eM2

|v1
∗ |θ|◦.

The proof (by essentially “recycling” the inductions from the proof of Lemma 4.31)
can be found in the appendix. The close connection of this lemma to Lemma 4.31,
which might not be apparent on first sight, stems from the fact that the omission of
◦-symbols from an input tree for an atmost M ◦•→◦•

2 is reflected in the final output
just in the same manner as in the case of •-symbols.

4.8 Assembling the efficiency analysis

Together with Lemma 4.33, the two lemmas from the previous subsection can under
appropriate preconditions be used to safely approximate the difference between the
numbers of ◦- and •-symbols reproduced by M ◦•→◦•

2 from an intermediate result
produced byM→◦•,κ

1 for an input tree t in terms of |τM◦•→◦•

2
(τM→◦•

1
(t))|• and the initial

expressions of M→◦•
1 and M◦•→◦•

2 for some M→◦•
1 obtained from M→◦•,κ

1 via ;
∗
EM1,M2

.

Lemma 4.37 (putting together some pieces)
Let κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→ {0, . . . , smax} and M→◦•

1 = (F,Σ,∆ ∪
{◦, •}, eM→◦•

1
, R→◦•

1 ) ∈ M→◦•
1 . If M→◦•,κ

1 ;
∗
EM1,M2

M→◦•
1 , the rules in R→◦•

1 contain

no ◦-symbols, M1 is context-linear, and M2 is atmost, then for every t ∈ TΣ:

|τM◦•→◦•

2
(τM→◦•,κ

1

(t))|◦−• ≤ |eM2
|v1

∗ |eM→◦•

1
|◦ − |τM◦•→◦•

2
(τM→◦•

1
(t))|•.

Proof
From repeated applications of Lemma 4.33 follows by reflexivity and transitivity
of ≤ that τM→◦•,κ

1

; τM◦•→◦•

2
; | � |◦−• ≤ τM→◦•

1
; τM◦•→◦•

2
; | � |◦−•, and hence for every

t ∈ TΣ that |τM◦•→◦•

2
(τM→◦•,κ

1

(t))|◦−• ≤ |τM◦•→◦•

2
(τM→◦•

1
(t))|◦ − |τM◦•→◦•

2
(τM→◦•

1
(t))|•.

By Lemma 4.36, with θ = τM→◦•

1
(t), the minuend is less than or equal to |eM2

|v1
∗

|τM→◦•

1
(t)|◦, which by Lemma 4.35—and using that the factor |eM2

|v1
is nonnegative—

is less than or equal to |eM2
|v1

∗ |eM→◦•

1
|◦.

Example 4.38 (rewriting M→◦•′

spine from Example 4.30 with ;
∗
EMspine ,Mpfx

)

By rewriting the initial expression and each right-hand side of a rule of M→◦•′

spine

arbitrarily often with rules from EMspine ,Mpfx
, we obtain M→◦•′

spine ;
∗
EMspine ,Mpfx

M→◦•
spine =

({f
(2)
1 , f

(3)
2 },Σmon ,∆tree ∪ {◦, •}, eM→◦•

spine
, R→◦•

spine) with eM→◦•

spine
= f1 u1 ε and rules
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R→◦•
spine : f1 (α u1) y1 → α (f1 u1 y1) f2 (α u1) y1 y2 → α (f1 u1 (δ y1 y2))

f1 (β u1) y1 → f2 u1 y1 (β (• ε)) f2 (β u1) y1 y2 → f2 u1 y1 (β (β y2))
f1 ε y1 → y1 f2 ε y1 y2 → δ y1 y2

As predicted by Lemma 4.37, the negative number of •-symbols in the output com-
puted in Figure 11 using the above rules safely approximates (actually is equal to)
the difference of the numbers of ◦- and •-symbols in the output of Figure 9.
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Figure 11: Reduction sequence using ⇒R→◦•

spine∪R◦•→◦•

pfx
.

Finally, we prove the main (new, as opposed to Theorem 4.19) theorem of this paper.

Theorem 4.39 (efficiency nondeterioration conditions for general mtts)
Let M1 = (F,Σ,∆, eM1

, R1) and M2 = (G,∆,Ω, eM2
, R2) be mtts to which Con-

struction 3.1 is applicable. If M1 is context-linear, M2 is linear, and there exists
κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→ {0, . . . , smax} such that the right-hand sides
of all rules in R→◦•,κ

1 can be rewritten with ⇒∗
EM1,M2

such that all ◦-symbols are

eliminated, then there exists a constant d ∈
�

such that for every t ∈ TΣ:

cbnM1;M2
(t) ≤ cbnM1;M2

(t) + d.

(The reader looking at this theorem without having followed the developments in the
previous subsections is referred to Definitions 4.20, 4.26, and 4.27 for the material
needed to make sense of its statement.)

Proof
Lemmas 4.18 (using that M1 is context-linear and M2 is atmost because it is linear)
and 4.24 imply that for every κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→ {0, . . . , smax} and
t ∈ TΣ:

cbnM1;M2
(t) − cbnM1;M2

(t) ≤ |τM◦•→◦•

2
(τM→◦•,κ

1

(t))|◦−•.

The statement about the particular κ whose existence is a precondition of the the-
orem implies that there is an mtt M→◦•

1 = (F,Σ,∆ ∪ {◦, •}, eM→◦•

1
, R→◦•

1 ) meeting
the requirements of Lemma 4.37. As a consequence, we obtain that for this κ and
every t ∈ TΣ:

|τM◦•→◦•

2
(τM→◦•,κ

1

(t))|◦−• ≤ |eM2
|v1

∗ |eM→◦•

1
|◦ − |τM◦•→◦•

2
(τM→◦•

1
(t))|•.
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Since |τM◦•→◦•

2
(τM→◦•

1
(t))|• is always nonnegative, the previous two inequalities imply

that for every t ∈ TΣ, cbnM1;M2
(t) ≤ cbnM1;M2

(t) + |eM2
|v1

∗ |eM→◦•

1
|◦.

Note that the preconditions of the previous theorem do not mention eM
→◦•,κ
1

in any
way. Nevertheless, it makes sense to eliminate—using ⇒∗

EM1,M2

—as many ◦-symbols

as possible also from eM
→◦•,κ
1

because that lowers the constant d up to which we can
establish efficiency nondeterioration.

Example 4.40 (efficiency analysis outcome for the running example)
Given that Mspine is context-linear and Mpfx is linear, and in the light of the rule
right-hand sides of the mtt M→◦•

spine from Example 4.38, Theorem 4.39 yields that there
exists a constant d ∈

�
such that cbnMspine ;Mpfx

(t) ≤ cbnMspine ;Mpfx
(t) + d for every

t ∈ TΣmon
. In fact, the constant here is 0 because |eM→◦•

spine
|◦ = 0. Given the observation

regarding the running example below Lemma 4.6 and the statements about exactness
of approximations additionally proved in [Voi04a] for Lemmas 4.24 and 4.37, we
could even conclude the stronger statement that for a given input t the composed
program is more efficient than the original program by exactly |τM◦•→◦•

pfx
(τM→◦•

spine
(t))|•

steps. This is witnessed, for a concrete input, by the lengths of the call-by-need
reduction sequences in Figures 3 and 4 on the one hand and the output computed
in Figure 11 on the other. By analyzing |τM◦•→◦•

pfx
(τM→◦•

spine
(t))|•, it is also not difficult

to see that in general the amount of improvement corresponds to the number of
β-blocks in the input tree (i.e. k in a decomposition as in Figure 1). To evaluate
the benefits of our approach to efficiency analysis, the interested reader may ponder
about how easy or difficult it would have been to work this out directly from the
definitions of the original and the composed program as given in Examples 2.2
and 3.3, and whether such an ad-hoc reasoning could be entrusted to a compiler.

In the course of our analysis we have, where possible, modularized proofs by “fac-
toring out” essential properties guaranteed by certain syntactic restrictions. This
provides potential levers for generalization. For example, the references in Defini-
tion 4.27 to restrictions from Definition 2.4 could be replaced with references to laxer
restrictions as long as Lemmas 2.5 and 4.31 are still satisfied for those. Similarly,
the linearity condition on M2 in Theorem 4.39 is actually a requirement on M2 to
be atmost and context-linear, where the latter requirement could be understood in
a “dynamic” sense, meaning that only the inequality from Lemma 2.5(1) must be
fulfilled (for every f , t, and k), rather than the syntactic restriction as given in
Definition 2.4. The dynamic property is called finite copying in the parameters with
parameter copying bound 1 in [EM99], and following the strategy from the proof of
Lemma 4.10(ii) in [EM03b] it is decidable for an mtt whether or not it is fulfilled. A
more liberal inclusion of ↑- and ↓-rules into EM1,M2

would also be acceptable without
requiring a new proof for Theorem 4.39, as long as Lemma 4.32 holds.

4.9 Effectiveness and efficiency of the analysis

At the heart of applying Theorem 4.39 (and of applying Theorem 2 of [Voi02], which
is repeated as Theorem 5.1 in Section 5.2 below) to establish call-by-need efficiency
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nondeterioration for a particular application of our composition construction is the
need to check, given a rewrite system E containing • (◦ v) → v, ◦ (• v) → v, and
some of the rules from Definition 4.26, whether certain ◦- and •-annotated versions
of rule right-hand sides of M1 can be rewritten with ⇒∗

E such that all ◦-symbols are
eliminated. That is, we have to be able to check the following predicate for some
φ ∈ RHS (F,∆ ∪ {◦, •}, U, Y ):

∃φ′ ∈ RHS (F,∆ ∪ {•}, U, Y ). φ⇒∗
E φ

′ (7)

Since in general ⇒E is neither confluent nor terminating, we cannot simply solve
this task by computing a unique normal form. However, in Chapter 5 of [Voi05] a
procedure is proved correct which decides (7) in only a single traversal over φ. Using
the standard interpretation of arithmetic operations and comparison relations on

� ∪ {−∞}, it consists of the following function:

supE : RHS (F,∆ ∪ {◦, •}, U, Y ) −→ � ∪ {−∞}
supE(yk) = 0
supE(• φ1) = supE(φ1) + 1
supE(◦ φ1) = supE(φ1) − 1

supE(δ φ1 · · ·φq) =
∑

j∈[q]







−∞ if ↓δ,j /∈ E ∧ 0 > supE(φj)
0 if ↑δ,j /∈ E ∧ 0 ≤ supE(φj)

supE(φj) otherwise

supE(f ui φ1 · · ·φr) =
∑

k∈[r]







−∞ if ↓f,k /∈ E ∧ 0 > supE(φk)
0 if ↑f,k /∈ E ∧ 0 ≤ supE(φk)

supE(φk) otherwise

which gives a nonnegative result for a particular φ iff (7) is fulfilled. The inductive
characterization becomes possible by generalizing the task to be solved. In addition
to determining whether a given φ can be rewritten using ⇒∗

E such that all ◦-symbols
are eliminated, supE also determines the maximal number of extra •-symbols that a
φ can “supply” at its root (in case supE(φ) ≥ 0) or the minimal number of •-symbols
to be added on top of φ in order to allow elimination of all ◦-symbols (the negative
result in case −∞ < supE(φ) < 0). It returns −∞ if φ cannot be rewritten such
that all ◦-symbols are eliminated, no matter how many additional •-symbols are
provided at the root. For further details and motivation, please consult [Voi05].

5 Related work

In [VK04a] and [Voi05] the presented composition construction is compared with
classical and shortcut deforestation and with lazy composition [Voi04b] on a qualita-
tive level and based on examples. Here we relate it to (other) composition techniques
for tree transducers (and for attribute grammars). We also discuss previous work
on efficiency analysis for tree transducer composition, and for functional programs
in general.
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5.1 Tree transducer composition

Composition of tree transducers was first considered in [Rou70] for two tdtts, to
be composed into a single one. Using a (reversible) decomposition of mtts into
tdtts and certain substitution devices [Eng80], the composition of tdtts was reused
in [Eng81] to compose a tdtt and an mtt (in this order) into a single mtt. A more
direct construction for this composition was later given in [Küh99]. In [EV85] an
mtt and a tdtt (in this order) are composed into a single mtt. Our Construction 3.1
generalizes all these composition results. More precisely, if both M1 and M2 are
tdtts, then it corresponds to the construction in the proof of Theorem 2 in [Rou70];
if M1 is a tdtt, then it corresponds to Transformation 11 in [Küh99]; and if M2 is a
tdtt, then it corresponds to the construction in the proof of Theorem 4.12 in [EV85].

The potential application of tree transducer composition for optimizing functional
programs was first recognized in [Küh97] and [Küh98]. This was also the first work
to deal with the composition of two mtts neither of which is a tdtt. It was realized
using an indirection via attributed tree transducers (for short atts). Essentially the
same approach was developed independently in [CDPR98, CDPR99], though not
in the syntactical framework of tree transducers. The key idea is to transform the
functions from the original program—corresponding to restricted mtts—into atts
or attribute grammars (either using a further indirection via tdtts and substitution
devices, or using a direct construction in the spirit of [CF82]), to compose these
using a construction based on ideas from [Fül81, Gan83, GG84, Gie88], and to
transform the result back into an mtt using a construction from [Fra82]. Our direct
construction is applicable to more programs because the restrictions on the original
mtts are less severe. More precisely, the technique from [Küh97, Küh98] requires M1

to be context-linear and weakly single-use, and M2 to be weakly single-use, in both
cases using the stronger notion of weakly single-use mentioned below Definition 2.4.
In [KV01] the indirect transformation was generalized by weakening the condition on
M2 to a certain restricted-use restriction. This condition is incomparable with—i.e.,
neither strictly more nor strictly less general than—our (weaker) notion of weakly
single-use, but it is not too hard to see that Construction 3.1 is also applicable
(with a slightly different argument establishing the unambiguity of the definition of
parM2,φ(πj, g, l) in case lab(φ, π) = δ) if M1 is (only) context-linear and M2 fulfills a
straightforward generalization (by dropping the condition on the initial expression
from the definition of the restricted-use property) of both restricted-use and our
notion of weakly single-use.

Interestingly, the annotation scheme from Definition 4.7 works also for the indi-
rect transformation via atts, i.e., an analogon of Lemma 4.10 holds, implying that
any conditions for efficiency nondeterioration derived using our approach apply to
the indirect transformation as well. From a different perspective, the appropriate-
ness of our annotation scheme also for the indirect transformation means that in
terms of the number of call-by-name reduction steps the output programs produced
by the indirect and the direct composition construction, respectively, perform iden-
tically. This gives a negative answer to the question, implicitly raised in [KV01],
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whether the fact that the output programs can be syntactically different provides
a practical motivation for holding on to the indirect transformation via atts, even
though a direct construction (with the obvious attendant benefits, e.g. for an im-
plementor) is available. With respect to call-by-name efficiency it is now clear that
there is no point in doing so. Any advantage that a program obtained by the in-
direct construction might hypothetically enjoy under call-by-need evaluation would
thus have to come from a somehow better use of sharing than in the program pro-
duced by the direct construction. But such an advantage is highly unlikely if the
transformation result is to be an mtt in both cases. Instead, one would have to
deviate from the principle that the final program should be an mtt again, by using a
different mapping from atts back to functional programs. The most promising can-
didate would be the mapping into a circular program applied in [Joh87] and [KS87].
We conjecture that this would lead to an overall transformation corresponding to
our lazy composition transformation from [Voi04b] (cf. also the related technique
in [Nis02, Nis04]).

In Theorem 2 of [Man03] the impressive result is proved that a composition of ar-
bitrary many mtts can be transformed into a single one if the function computed by
the composition is of linear size increase, which is decidable. The heart of the asso-
ciated algorithm is to compose two mtts, the first of which is finite copying [EM99]
and the second of which is recursion-linear. This is again done using an indirec-
tion via atts, applying essentially the composition construction from [Küh98] (cum
grano salis, as expressed in [Man03], because the atts are additionally equipped
with regular look-ahead). It would be interesting to investigate a direct composi-
tion construction also for this setting. Formal efficiency analysis of the final mtt
vs. the original program, however, would be complicated by the fact that before we
even get hands at the finite copying and the recursion-linear mtt to compose, a fair
number of constructions from [Man02], [EV85], and [EM03b] have to be applied.
Note that neither is the composition technique from [Man03] more general than our
Construction 3.1, nor the other way round. While in [Man03] more than two mtts
can be composed and there are no a priori syntactic restrictions on their rules, our
construction can also handle mtts the composition of which computes a function
that is not of linear size increase. Further note that there is not much room for
generalizing the result from [Man03]: the introduction of [KV94] describes a tree
transduction that (i) is of quadratic size increase, (ii) can be computed by the
composition of two mtts, but (iii) cannot be computed by a single mtt. Facts (i)
and (ii) are easy to establish; fact (iii) can be considered folklore, in particular in
light of the use that is made in [KV94] of the tree transduction in question as the
motivating example for generalizing mtts by introducing a more powerful class of
tree transducers. A variation of the mentioned tree transduction (by adding the path
nondeterministically to an arbitrary leaf rather than to all leaves of the input tree)
indicates that the result from [Man03] about the collapse of the composition hierar-
chy for nondeterministic mtts under the assumptions that the relation computed
by a composition is a function and is of linear size increase cannot be generalized
by dropping the first assumption.
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5.2 Efficiency analysis for tree transducer composition

In [Voi02] we have studied the impact of tree transducer composition on call-by-need
efficiency for the special case that one of the mtts to be composed is a tdtt. Beside a
theorem corresponding to Theorem 4.19 from the present paper, that former study
obtained further results by considering only the steps performed by the second mtt
in the original program, which allows weaker restrictions than context-linearity or
basicness of M1 and atmostness of M2 to still guarantee, using a simpler annotation,
that call-by-need steps are counted. The same approach could be followed if neither
of the involved mtts is a tdtt, but we have refrained from doing so. We only repeat
the outcome for the special case considered in [Voi02].

Theorem 5.1 (essentially Theorem 2 of [Voi02])
Let M1 = (F,Σ,∆, eM1

, R1) and M2 = (G,∆,Ω, eM2
, R2) be mtts, at least one of

which is a tdtt. If M2 is context-linear or basic, eM1
= f u1 θ1 · · · θr and eM2

=
g v1 η1 · · · ηs for some f ∈ F (r+1), g ∈ G(s+1), θ1, . . . , θr ∈ T∆, and η1, . . . , ηs ∈ TΩ,
and there exists λ ∈ {0, 1} such that the right-hand sides of all rules in

R→◦•,λ
1 : f (σ u1 · · ·up) y1 · · · yr → ◦(1−λ) rhsM1,f,σ

[δ � �− • · δ | δ ∈ ∆]
[f ′ � �− ◦λ · f ′ | f ′ ∈ F ]

∀f ∈ F (r+1), σ ∈ Σ(p)

can be rewritten with ⇒∗
EM1,M2

(cf. Definitions 4.26 and 4.27) such that no ◦-symbols

remain, then:
cbnM1;M2

≤ cbnM1;M2
.

Actually, in [Voi02] no ↓f,k-rules are available to rewrite right-hand sides of rules

in R→◦•,λ
1 . However, since we have proved Lemma 4.33 (corresponding to Lemma 7

in [Voi02]) for the general case that EM1,M2
may contain ↓f,k-rules, the theorem is

also valid as given here. In any case, by Definition 4.27 such rules are contained in
EM1,M2

only if M1 is context-linear and M2 is atmost, and under these conditions we
already know by Theorem 4.19 that cbnM1;M2

≤ cbnM1;M2
.

Theorems 4.19, 4.39, and 5.1 are sufficient to formally establish call-by-need ef-
ficiency nondeterioration for many typical examples of tree transducer composition
for which previously efficiency nondeterioration was assured by ad-hoc reasoning or
by experiments only. In particular, this is the case for the various such examples
considered in [VK04a]. Our results also capture all the examples for tree trans-
ducer composition from [KV01], where the pure elimination of intermediate results
was considered as success, without regard to actual numbers of reduction steps.
Moreover, they improve on formal efficiency considerations performed in [Küh99]
and [Höf99] for the special case that one of the mtts to be composed is a tdtt. More
precisely, the respective results of [Küh99], namely that the composed program is
at least as efficient as the original program if M1 is a linear tdtt and M2 is linear
(Corollary 21), or if M1 is linear, but not a tdtt, and M2 is a linear tdtt with ex-
actly one state (Theorem 23), are covered and generalized by Theorem 1 of [Voi02],
and thus by Theorem 4.19. The same is true for Claim 3.13 and Conjecture 3.21
of [Höf99], together stating an efficiency improvement if M1 is a tdtt and M2 is
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linear. Theorem 4.34 of [Höf99] states an efficiency improvement for the case that
M1 is context-nondeleting, every rule right-hand side of M1 contains at least one
output symbol, and M2 is a nondeleting tdtt with exactly one state that is not linear.
Theorem 2 of [Voi02]—repeated as Theorem 5.1 above—gives (with λ = 0, using the
fact that all ↑-rules are in EM1,M2

if M1 is context-nondeleting and M2 is nondelet-
ing) a more general result in that M2 is allowed to be any nondeleting tdtt. The
only efficiency result proved about tree transducer composition in [Höf99] that goes
beyond our theorems is Theorem 4.21 of that work, stating an efficiency improve-
ment if M1 is context-nondeleting and M2 is a linear, nondeleting tdtt with exactly
one state. We conjecture that context-nondeletingness of M1 and nondeletingness
of M2 can be dropped here.

In [Voi05] it is argued that Theorem 4.19 remains true even if in addition to
the pure number of reduction steps the aspects of tail calls and partial demand are
taken into account. Further, adjustments to Theorems 4.39 and 5.1 are proposed
to maintain their applicability in the same setting. This supports the practical
relevance of our efficiency results.

5.3 Efficiency analysis of functional programs

The idea to externalize an intensional property of a computation is not new. For
example, in [Ros89] for every first-order functional program a step-counting version
is produced that—when called with the same arguments—returns the number of
call-by-value reduction steps performed by the original program. Then, an abstract
interpretation of this step-counting program is used to express the worst-case com-
plexity (in dependence on the input size) by recurrence equations. The ultimate
goal is to transform these equations into a closed expression, which unfortunately is
feasible only for subclasses of programs. In [LG01] more detailed measures than just
the number of reduction steps are used by counting different primitive operations
separately, thus allowing to compare evaluation costs (for concrete inputs) along
different dimensions.

These techniques cannot easily be adapted to call-by-name or call-by-need reduc-
tion because for those evaluation strategies the number of reduction steps performed
for a certain program expression is not a compositional property. Since the com-
putation time invested in evaluating a function argument depends on how much of
the argument’s value is actually “needed”, the total cost of a function application
cannot be understood solely from the cost properties of its ingredients in isolation.
In [Wad88] step-counting versions computing upper bounds for the number of call-
by-need steps are derived by formally describing this “need” using strictness analysis
(see also the related approach in [BH89]). To avoid the problem of having to compute
exact demand information, [San95] developed a more operational approach leading
to a theory of call-by-name cost equivalence, an axiomatization of which is given
by annotating functional programs with a special identity function that represents
a single “tick” of computation time and by stating a set of laws that can be used to
derive statements about the relative efficiency of program expressions. With a sharp
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eye, some of these laws can be recognized in the annotation schemes (for counting
the reduction steps of the original and of the composed program) from Section 4.2.
In [GS01] syntactic means similar to tick-symbols—so-called space gadgets—are used
in reasoning about asymptotic (i.e., only up to constant factors) space complexity.

While the papers mentioned in this subsection so far are concerned with deriving
explicit cost bounds for a given program, or with comparing the efficiency of two con-
crete programs that compute the same result but are otherwise unrelated (at least
not related in a formal, systematic way), our aim was to analyze on a general level
the relative efficiency for pairs of two closely connected programs, namely the input
and output programs of Construction 3.1. In this respect our aim is similar to that
of [San96b], where a call-by-name improvement relation (a nonsymmetric counter-
part to the cost equivalence of [San95]) is used to prove the correctness—and, more
as a side product, also call-by-name efficiency nondeterioration—of unfold/fold-
transformations. In [San96a] that machinery is applied to classical deforestation.
A key difference separating our work from that of Sands is that, unlike unfold/fold-
transformations, our construction cannot be understood as a sequence of locally
equivalence-preserving steps, but rather must be considered as a whole in one go.
As a consequence, also the “bookkeeping” of tick-symbols for the transformed pro-
gram cannot be performed in a similarly modular fashion as in [San96b]. Instead, we
had to very carefully analyze the composition construction to invent the annotation
scheme in Section 4.3 so that eventually Lemma 4.10 could be proved. The same
aspect prevents the application—to our construction—of the call-by-need variant of
the approach from [San96b] developed in [MS99].

6 Conclusion

We have developed sufficient conditions for efficiency improvement by tree trans-
ducer composition in lazy functional languages. The key was to annotate programs
thus that their outputs reflect the numbers of performed reduction steps. Together
with the presented “decomposition” of the respective annotation of the composed
program in terms of a suitable annotation of the original program, this allows to
study the effect of the composition construction on efficiency based solely on the
outputs computed by two different annotated versions of the original program. For
the sake of proceeding with the analysis we have made compromises on generality
and accepted pessimistic approximations at some places. Nevertheless, the sufficient
conditions obtained are met in many relevant cases. Moreover, they are suitable to
be checked in an optimizing compiler. In fact, for the special case that one of the
mtts to be composed is a tdtt the conditions (from [Voi02]) have already been imple-
mented in [Reu03], using a slightly less general variant of the procedure presented in
Section 4.9. It is planned to integrate also the conditions for the general case of tree
transducer composition presented in this paper. For a more fine-grained analysis it
would be worthwhile to investigate efficiency measures where not every reduction
step is assumed to incur exactly the same cost, even beyond the consideration of
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tail calls. Experiments using the implementation from [Reu03] can hopefully provide
help in determining necessary weights.

Another topic of interest would be the setting of functional languages based on
call-by-value reduction. Automatic elimination of intermediate results in such lan-
guages has scarcely been studied before, and so the same of course holds with respect
to efficiency analysis for appropriate transformation techniques. While tree trans-
ducer composition is applicable and semantics-preserving irrespective of the chosen
reduction strategy, our efficiency analysis would not be easily transferable to the
call-by-value setting: the annotation by scattering symbols representing reduction
steps over the output tree as in Section 4.2 has an inherent call-by-name flavor.
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A Proof appendix

The predominant proof principle to be used in this appendix works as follows.

Proof principle (simultaneous induction; cf. e.g. [EV85, FV98, VK04b])
Let Σ be a ranked alphabet. For a tree t ∈ TΣ, a subtree sub(t, π) with π ∈ paths(t)
is called proper if π 6= ε and direct if π ∈

�
+ . Let (a) and (b) be statements, called

induction hypotheses, where (a) has a free variable t ∈ TΣ and (b) has free variables
p ∈

�
and t1, . . . , tp ∈ TΣ. If
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(a) ⇐ (b) : for every t ∈ TΣ such that (a) holds for every proper subtree of t and
(b) holds for direct subtrees t1, . . . , tp of t, p ∈

�
, we can prove that (a) holds, and

(b) ⇐ (a) : for every p ∈
�

and t1, . . . , tp ∈ TΣ such that (a) holds for each of the
t1, . . . , tp, we can prove that (b) holds,

then we have proved that (a) holds for every t ∈ TΣ and that (b) holds for every
p ∈

�
and t1, . . . , tp ∈ TΣ.

Note the somewhat unusual reference to (a) from within the induction step (a) ⇐
(b), which gives more—and needed—freedom in later proofs. Since it refers only to
proper subtrees of the one under consideration, the soundness of the proof principle
can still be argued along similar lines as in Section 2.5 of [EV85]. Further note that
ordinary structural induction over trees is a special case of simultaneous induction,
with (b) being trivially true. Simultaneous and structural induction will also be used
for trees with a more refined structure, in particular for elements of RHS (· · ·)-sets
(cf. Definition 2.1). Obvious properties of normal forms will often be used without
mentioning; similarly for substitutions.

Proof of Lemma 2.6
We prove the following two statements (a) and (b):

(a) for every t ∈ TΣ:

For every f ∈ F (r+1) and θ1, . . . , θr ∈ TF∪Σ∪∆(Y ):
nf (⇒R, f t θ1 · · · θr) = nf (⇒R, f t y1 · · · yr)[yk

� − nf (⇒R, θk) | k ∈ [r]].

(b) for every p ∈
�

and t1, . . . , tp ∈ TΣ:

For every r ∈
�
, θ1, . . . , θr ∈ TF∪Σ∪∆(Y ), and φ ∈ RHS (F,∆, Up, Yr):

nf (⇒R, φ[u1, . . . , up, y1, . . . , yr
� − t1, . . . , tp, θ1, . . . , θr])

= nf (⇒R, φ[ui
� − ti | i ∈ [p]])[yk

� − nf (⇒R, θk) | k ∈ [r]].

by simultaneous induction. Lemma 2.6 then follows from statement (a), taking into
account that elements of T∆ ⊆ TF∪Σ∪∆(Y ) are normal forms with respect to ⇒R.

(a) ⇐ (b) : Assume t = σ t1 · · · tp for σ ∈ Σ(p) and t1, . . . , tp ∈ TΣ. The statement
follows from induction hypothesis (b) with φ = rhsM,f,σ.

(b) ⇐ (a) : for fixed r ∈
�

and θ1, . . . , θr ∈ TF∪Σ∪∆(Y ) by structural induction on
φ ∈ RHS (F,∆, Up, Yr). The cases φ ∈ Yr and lab(φ, ε) ∈ ∆ are straightforward.
The validity in the remaining case is proved as follows.

φ = f ui′ φ1 · · ·φr′ for some f ∈ F (r′+1), ui′ ∈ Up, φ1, . . . , φr′ ∈ RHS (F,∆, Up, Yr):

nf (⇒R, (f ui′ φ1 · · ·φr′)[u1, . . . , up, y1, . . . , yr
� − t1, . . . , tp, θ1, . . . , θr])

= (by substitution, induction hypothesis (a) for ti′ , and the induction
hypotheses for the φ1, . . . , φr′)

nf (⇒R, f ti′ y1 · · · yr′)[yk′

� − nf (⇒R, φk′[ui
� − ti | i ∈ [p]])

[yk
� − nf (⇒R, θk) | k ∈ [r]] | k′ ∈ [r′]]
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= (by composition of substitutions)

nf (⇒R, f ti′ y1 · · · yr′)[yk′

� − nf (⇒R, φk′[ui
� − ti | i ∈ [p]]) | k′ ∈ [r′]]

[yk
� − nf (⇒R, θk) | k ∈ [r]]

= (by substitution and induction hypothesis (a) for ti′)

nf (⇒R, (f ui′ φ1 · · ·φr′)[ui
� − ti | i ∈ [p]])[yk

� − nf (⇒R, θk) | k ∈ [r]]

Proof of Lemma 4.8
For fixed p, r ∈

�
we prove the following two statements:

(a) for every φ ∈ RHS (F,∆, Up, Yr):

For every g ∈ G(s+1) and η1, . . . , ηs, η
?
1, . . . , η

?
s ∈ TF∪G∪H∪∆∪Ω∪{�,?,◦,nil}(Up∪Yr∪

Z ∪ ZG) with nf (⇒R�?→◦

2
∪Pre∪Pair , η

?
l ) = nf (⇒R2∪Pre∪Pair , ηl) for every l ∈ [s]:

nf (⇒R�?→◦

2
∪Pre∪Pair , g φ[yk

� − ? yk | k ∈ [r]] η?
1 · · ·η

?
s)

= nf (⇒R2∪Pre∪Pair , g φ η1 · · · ηs).

(b) for every r′ ∈
�

and φ1, . . . , φr′ ∈ RHS (F,∆, Up, Yr):

For every f ′ ∈ F (r′+1), ui ∈ Up, and ηg1,1, . . . , ηgµ,sµ, η
?
g1,1, . . . , η

?
gµ,sµ

∈
TF∪G∪H∪∆∪Ω∪{�,?,◦,nil}(Up ∪ Yr ∪ Z ∪ ZG) with nf (⇒R�?→◦

2
∪Pre∪Pair , η

?
g′,l′) =

nf (⇒R2∪Pre∪Pair , ηg′,l′) for every g′ ∈ G(s′+1) and l′ ∈ [s′], for every C ⊆ [r′]×G,
k′ ∈ [r′], and g′′ ∈ G:

nf (⇒R�?→◦

2
∪Pre∪Pair , nestf ′(k′, g′′, C)[u � − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg′,l′

� − η?
g′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]])
= nf (⇒R2∪Pre∪Pair , nestf ′(k′, g′′, C)[u � − ui,

y′b
� − φb | b ∈ [r′],

zg′,l′
� − ηg′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]]).

by simultaneous induction. Lemma 4.8 then follows from statement (a) with φ =
rhsM1,f,σ and ηl = η?

l = zl for every l ∈ [s].

(a) ⇐ (b) : by case analysis on φ ∈ RHS (F,∆, Up, Yr):

φ ∈ Yr :
straightforward, using that rhsM�?→◦

2
,g,? = g v1 (◦ z1) · · · (◦ zs) and the form of

rules in Pre.

φ = δ φ1 · · ·φq for some δ ∈ ∆(q) and φ1, . . . , φq ∈ RHS (F,∆, Up, Yr):

straightforward, using that for every ψ ∈ RHS (G,Ω, Vq, Zs), and thus in partic-
ular for rhsM�?→◦

2
,g,δ = rhsM2,g,δ,

nf (⇒R�?→◦

2
∪Pre∪Pair , ψ[vj

� − φj[yk
� − ? yk | k ∈ [r]] | j ∈ [q],

zl
� − η?

l | l ∈ [s]])
= nf (⇒R2∪Pre∪Pair , ψ[v1, . . . , vq, z1, . . . , zs

� − φ1, . . . , φq, η1, . . . , ηs]) ,

which can be proved by structural induction. The validity in the case ψ ∈ Zs fol-
lows from the precondition on the η1, . . . , ηs, η

?
1, . . . , η

?
s . The case lab(ψ, ε) ∈ Ω is



56 Proof appendix

straightforward. In the remaining case, ψ = g′ vj ψ1 · · ·ψs′ for some g′ ∈ G(s′+1),
vj ∈ Vq, and ψ1, . . . , ψs′ ∈ RHS (G,Ω, Vq, Zs), the induction hypotheses for the
ψ1, . . . , ψs′ establish the precondition necessary to apply induction hypothesis
(a) for φj, which suffices.

φ = f ′ ui φ1 · · ·φr′ for some f ′ ∈ F (r′+1), ui ∈ Up, φ1, . . . , φr′ ∈ RHS (F,∆, Up, Yr):

nf (⇒R�?→◦

2
∪Pre∪Pair , g (f ′ ui φ1 · · ·φr′)[yk

� − ? yk | k ∈ [r]] η?
1 · · · η

?
s)

= (by ⇒Pair )

nf (⇒R�?→◦

2
∪Pre∪Pair ,

f ′g ui nestf ′(1, g1, ∅)[u
� − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg,l

� − η?
l | l ∈ [s],

zg′,l′
� − nil | g′ ∈ G(s′+1) \ {g}, l′ ∈ [s′]]

· · ·
nestf ′(r′, gµ, ∅)[u

� − ui,
y′b

� − φb[yk
� − ? yk | k ∈ [r]] | b ∈ [r′],

zg,l
� − η?

l | l ∈ [s],
zg′,l′

� − nil | g′ ∈ G(s′+1) \ {g}, l′ ∈ [s′]]
η?

1 · · · η
?
s)

= (see below)

nf (⇒R2∪Pre∪Pair , f ′g ui nestf ′(1, g1, ∅)[u
� − ui,

y′b
� − φb | b ∈ [r′],

zg,l
� − ηl | l ∈ [s],

zg′,l′
� − nil | g′ ∈ G(s′+1) \ {g}, l′ ∈ [s′]]

· · ·
nestf ′(r′, gµ, ∅)[u

� − ui,
y′b

� − φb | b ∈ [r′],
zg,l

� − ηl | l ∈ [s],
zg′,l′

� − nil | g′ ∈ G(s′+1) \ {g}, l′ ∈ [s′]]
η1 · · · ηs)

= (by ⇒Pair )

nf (⇒R2∪Pre∪Pair , g (f ′ ui φ1 · · ·φr′) η1 · · · ηs)

Given the precondition that nf (⇒R�?→◦

2
∪Pre∪Pair , η

?
l ) = nf (⇒R2∪Pre∪Pair , ηl) for

every l ∈ [s], the above gap can be closed if we establish for every k′ ∈ [r′] and
g′′ ∈ G:

nf (⇒R�?→◦

2
∪Pre∪Pair , nestf ′(k′, g′′, ∅)[u � − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg,l

� − η?
l | l ∈ [s],

zg′,l′
� − nil | g′ ∈ G(s′+1) \ {g}, l′ ∈ [s′]])

= nf (⇒R2∪Pre∪Pair , nestf ′(k′, g′′, ∅)[u � − ui,
y′b

� − φb | b ∈ [r′],
zg,l

� − ηl | l ∈ [s],
zg′,l′

� − nil | g′ ∈ G(s′+1) \ {g}, l′ ∈ [s′]]).
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But this is an instance of induction hypothesis (b), given the precondition on
the η1, . . . , ηs, η

?
1, . . . , η

?
s .

(b) ⇐ (a) : for fixed f ′ ∈ F (r′+1), ui ∈ Up, and ηg1,1, . . . , ηgµ,sµ, η
?
g1,1, . . . , η

?
gµ,sµ

∈
TF∪G∪H∪∆∪Ω∪{�,?,◦,nil}(Up ∪ Yr ∪ Z ∪ ZG) with the associated precondition, by in-
duction over the reversed subset-order on P([r′] ×G):

C = [r′] ×G :
In this base case we have for every k′ ∈ [r′] and g′′ ∈ G that (k′, g′′) ∈ C and
thus nestf ′(k′, g′′, C) = nil , which makes the desired equation trivially true.

C ⊂ [r′] ×G :
For every k′ ∈ [r′] and g′′ ∈ G with (k′, g′′) /∈ C—the other case is again trivial—
we have, setting s′′ = rankG(g′′) − 1:

nf (⇒R�?→◦

2
∪Pre∪Pair , nestf ′(k′, g′′, C)[u � − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg′,l′

� − η?
g′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]])

= (by definition of nestf ′ and substitution)

nf (⇒R�?→◦

2
∪Pre∪Pair ,

g′′ φk′[yk
� − ? yk | k ∈ [r]]

(k′f ′1g′′ u nestf ′(1, g1, C ∪ {(k′, g′′)}) · · · nestf ′(r′, gµ, C ∪ {(k′, g′′)})
zg1,1 · · · zgµ,sµ)[u � − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg′,l′

� − η?
g′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]]
· · ·

(k′f ′s′′g′′ u nestf ′(1, g1, C ∪ {(k′, g′′)}) · · · nestf ′(r′, gµ, C ∪ {(k′, g′′)})
zg1,1 · · · zgµ,sµ)[u � − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg′,l′

� − η?
g′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]])

= (see below)

nf (⇒R2∪Pre∪Pair ,

g′′ φk′ (k′f ′1g′′ u nestf ′(1, g1, C ∪ {(k′, g′′)}) · · · nestf ′(r′, gµ, C ∪ {(k′, g′′)})
zg1,1 · · · zgµ,sµ)[u � − ui,

y′b
� − φb | b ∈ [r′],

zg′,l′
� − ηg′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]]
· · ·

(k′f ′s′′g′′ u nestf ′(1, g1, C ∪ {(k′, g′′)}) · · · nestf ′(r′, gµ, C ∪ {(k′, g′′)})
zg1,1 · · · zgµ,sµ)[u � − ui,

y′b
� − φb | b ∈ [r′],

zg′,l′
� − ηg′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]])

= (by definition of nestf ′ and substitution)

nf (⇒R2∪Pre∪Pair , nestf ′(k′, g′′, C)[u � − ui,
y′b

� − φb | b ∈ [r′],
zg′,l′

� − ηg′,l′ | g
′ ∈ G(s′+1), l′ ∈ [s′]])
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The above gap can be closed by using induction hypothesis (a) for φk′ if we
establish for every l ∈ [s′′]:

nf (⇒R�?→◦

2
∪Pre∪Pair ,

(k′f ′ lg′′ u nestf ′(1, g1, C ∪ {(k′, g′′)}) · · · nestf ′(r′, gµ, C ∪ {(k′, g′′)})
zg1,1 · · · zgµ,sµ)[u � − ui,

y′b
� − φb[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg′,l′

� − η?
g′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]])
= nf (⇒R2∪Pre∪Pair ,

(k′f ′ lg′′ u nestf ′(1, g1, C ∪ {(k′, g′′)}) · · · nestf ′(r′, gµ, C ∪ {(k′, g′′)})
zg1,1 · · · zgµ,sµ)[u � − ui,

y′b
� − φb | b ∈ [r′],

zg′,l′
� − ηg′,l′ | g

′ ∈ G(s′+1), l′ ∈ [s′]]).

But this follows directly from the precondition on the ηg1,1, . . . , ηgµ,sµ, η
?
g1,1, . . . ,

η?
gµ,sµ

and applications of the induction hypothesis for C ∪ {(k′, g′′)}.

Proof of Lemma 4.9
For fixed σ ∈ Σ(p) and f ∈ F (r+1) with r ∈

�
+ we prove by induction over the

prefix-order of paths π ∈ paths(rhsM1,f,σ) with lab(rhsM1,f,σ, π) /∈ Up that for every
g ∈ G(s+1) and l ∈ [s]:

nf (⇒R�?→◦

2
∪Pre∪Pair , parM�?→◦

2
,� rhsM1,f,σ[yk � − ? yk |k∈[r]](1π, g, l))

= nf (⇒R2∪Pre∪Pair , parM2,rhsM1,f,σ
(π, g, l)).

Lemma 4.9 then follows by Yr ∩ Up = ∅ and the definition of rhsM→�?
1

,f,σ.

The base case ε is straightforward, using the definition of par -functions and the
fact that rhsM�?→◦

2
,g,� = ◦ (g v1 z1 · · · zs). The inductive case πj ∈ paths(rhsM1,f,σ)

with j ∈
�

+ and lab(rhsM1,f,σ, πj) /∈ Up is shown by case analysis on lab(rhsM1,f,σ, π)
= lab(� rhsM1,f,σ[yk

� − ? yk | k ∈ [r]], 1π):

lab(rhsM1,f,σ, π) = f ′ for some f ′ ∈ F (r′+1), where j − 1 ∈ [r′]:

nf (⇒R�?→◦

2
∪Pre∪Pair , parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk |k∈[r]](1πj, g, l))

= (by definition of parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk |k∈[r]] and properties of sub)

nf (⇒R�?→◦

2
∪Pre∪Pair ,

((j − 1)f ′ lg u nestf ′(1, g1, {(j − 1, g)}) · · · nestf ′(r′, gµ, {(j − 1, g)})
zg1,1 · · · zgµ,sµ)

[u � − lab(� rhsM1,f,σ[yk
� − ? yk | k ∈ [r]], 1π1),

y′b
� − sub(rhsM1,f,σ, π(b+ 1))[yk

� − ? yk | k ∈ [r]] | b ∈ [r′],
zg′,l′

� − parM�?→◦

2
,� rhsM1,f,σ[yk � − ? yk |k∈[r]](1π, g

′, l′) | g′ ∈ G(s′+1), l′ ∈ [s′]])

= (see below)
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nf (⇒R2∪Pre∪Pair ,

((j − 1)f ′ lg u nestf ′(1, g1, {(j − 1, g)}) · · · nestf ′(r′, gµ, {(j − 1, g)})
zg1,1 · · · zgµ,sµ)

[u � − lab(rhsM1,f,σ, π1),
y′b

� − sub(rhsM1,f,σ, π(b+ 1)) | b ∈ [r′],
zg′,l′

� − parM2,rhsM1,f,σ
(π, g′, l′) | g′ ∈ G(s′+1), l′ ∈ [s′]])

= (by definition of parM2,rhsM1,f,σ
)

nf (⇒R2∪Pre∪Pair , parM2,rhsM1,f,σ
(πj, g, l))

Since lab(� rhsM1,f,σ[yk
� − ? yk | k ∈ [r]], 1π1) = lab(rhsM1,f,σ, π1) ∈ Up and for

every g′ ∈ G(s′+1) and l′ ∈ [s′],

nf (⇒R�?→◦

2
∪Pre∪Pair , parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk | k∈[r]](1π, g

′, l′))

= nf (⇒R2∪Pre∪Pair , parM2,rhsM1,f,σ
(π, g′, l′))

by the induction hypothesis for π, the above gap can be closed if we establish for
every k′ ∈ [r′] and g′′ ∈ G:

nf (⇒R�?→◦

2
∪Pre∪Pair ,

nestf ′(k′, g′′, {(j − 1, g)})
[u � − lab(� rhsM1,f,σ[yk

� − ? yk | k ∈ [r]], 1π1),
y′b

� − sub(rhsM1,f,σ, π(b+ 1))[yk
� − ? yk | k ∈ [r]] | b ∈ [r′],

zg′,l′
� − parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk | k∈[r]](1π, g

′, l′) | g′ ∈ G(s′+1), l′ ∈ [s′]])

= nf (⇒R2∪Pre∪Pair , nestf ′(k′, g′′, {(j − 1, g)})
[u � − lab(rhsM1,f,σ, π1),
y′b

� − sub(rhsM1,f,σ, π(b+ 1)) | b ∈ [r′],
zg′,l′

� − parM2,rhsM1,f,σ
(π, g′, l′) | g′ ∈ G(s′+1), l′ ∈ [s′]]).

But this is an instance of statement (b) from the proof of Lemma 4.8 for sub(
rhsM1,f,σ, π2), . . . , sub(rhsM1,f,σ, π(r′ + 1)) ∈ RHS (F,∆, Up, Yr), where the state-
ments obtained by the induction hypothesis for π establish the necessary precon-
dition on the values substituted for the zg′,l′.

lab(rhsM1,f,σ, π) = δ for some δ ∈ ∆(q), where j ∈ [q]:

If there is no (g vj · · ·)-call in the δ-rules of M2 and hence also no such call in the
δ-rules of M�?→◦

2 , then both sides of the equation are equal to nil by the definitions
of parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk |k∈[r]] and parM2,rhsM1,f,σ

.

Otherwise, if the unique such call—in both the δ-rules of M2 and of M�?→◦
2 —looks,

with g′ ∈ G(s′+1) and ψ1, . . . , ψs ∈ RHS (G,Ω, Vq, Zs′), as follows:

g′ (δ v1 · · · vq) z1 · · · zs′ → · · · (g vj ψ1 · · ·ψs) · · · ,

then:



60 Proof appendix

nf (⇒R�?→◦

2
∪Pre∪Pair , parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk |k∈[r]](1πj, g, l))

= (by definition of parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk |k∈[r]] and properties of sub)

nf (⇒R�?→◦

2
∪Pre∪Pair , ψl[vj′

� − sub(rhsM1,f,σ, πj
′)[yk

� − ? yk | k ∈ [r]] | j ′ ∈ [q],
zl′

� − parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk |k∈[r]](1π, g

′, l′) | l′ ∈ [s′]])

= (see below)

nf (⇒R2∪Pre∪Pair , ψl[vj′
� − sub(rhsM1,f,σ, πj

′) | j ′ ∈ [q],
zl′

� − parM2,rhsM1,f,σ
(π, g′, l′) | l′ ∈ [s′]])

= (by definition of parM2,rhsM1,f,σ
)

nf (⇒R2∪Pre∪Pair , parM2,rhsM1,f,σ
(πj, g, l))

Above we used that for every ψ ∈ RHS (G,Ω, Vq, Zs′):

nf (⇒R�?→◦

2
∪Pre∪Pair , ψ[vj′

� − sub(rhsM1,f,σ, πj
′)[yk

� − ? yk | k ∈ [r]] | j ′ ∈ [q],
zl′

� − parM�?→◦

2
,� rhsM1,f,σ [yk � − ? yk | k∈[r]](1π, g

′, l′) | l′ ∈ [s′]])

= nf (⇒R2∪Pre∪Pair , ψ[vj′
� − sub(rhsM1,f,σ, πj

′) | j ′ ∈ [q],
zl′

� − parM2,rhsM1,f,σ
(π, g′, l′) | l′ ∈ [s′]]) ,

which can be proved by structural induction. The validity in the case ψ ∈ Zs′

follows from the induction hypothesis for π. The case lab(ψ, ε) ∈ Ω is straight-
forward. In the remaining case, ψ = g′′ vd ψ′

1 · · ·ψ
′
s′′ for some g′′ ∈ G(s′′+1),

vd ∈ Vq, and ψ′
1, . . . , ψ

′
s′′ ∈ RHS (G,Ω, Vq, Zs′), the induction hypotheses for the

ψ′
1, . . . , ψ

′
s′′ establish the precondition necessary to apply statement (a) from the

proof of Lemma 4.8 for sub(rhsM1,f,σ, πd) ∈ RHS (F,∆, Up, Yr), which suffices.

Proof of Lemma 4.15
We prove the following two statements:

(a) for every t′ ∈ T∆∪{�,?}:

For every g ∈ G(s+1) and η◦1, . . . , η
◦
s , η

•
1, . . . , η

•
s , η

◦−•
1 , . . . , η◦−•

s ∈ TG∪∆∪Ω∪{�,?,◦,•}

with |nf (⇒R�?→◦

2
, η◦l )|◦ − |nf (⇒R�→•

2
, η•l )|• = |nf (⇒R?•→◦•

2
, η◦−•

l )|◦−• for every
l ∈ [s]:

|nf (⇒R�?→◦

2
, g t′ η◦1 · · · η

◦
s)|◦ − |nf (⇒R�→•

2
, g t′[? � �− id ] η•1 · · · η

•
s)|•

= |nf (⇒R?•→◦•

2
, g t′[� � �− id ][δ � �− • · δ | δ ∈ ∆] η◦−•

1 · · · η◦−•
s )|◦−•.

(b) for every q ∈
�

and t′1, . . . , t
′
q ∈ T∆∪{�,?}:

For every s ∈
�

and η◦1, . . . , η
◦
s , η

•
1, . . . , η

•
s , η

◦−•
1 , . . . , η◦−•

s ∈ TG∪∆∪Ω∪{�,?,◦,•} with
|nf (⇒R�?→◦

2
, η◦l )|◦−|nf (⇒R�→•

2
, η•l )|• = |nf (⇒R?•→◦•

2
, η◦−•

l )|◦−• for every l ∈ [s],
for every ψ ∈ RHS (G,Ω, Vq, Zs):

|nf (⇒R�?→◦

2
, ψ[v1, . . . , vq, z1, . . . , zs

� − t′1, . . . , t
′
q, η

◦
1, . . . , η

◦
s ])|◦

− |nf (⇒R�→•

2
, ψ[vj

� − t′j[?
� �− id ] | j ∈ [q],

zl
� − η•l | l ∈ [s]])|•

= |nf (⇒R?•→◦•

2
, ψ[vj

� − t′j[�
� �− id ][δ � �− • · δ | δ ∈ ∆] | j ∈ [q],

zl
� − η◦−•

l | l ∈ [s]])|◦−•.
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by simultaneous induction. Lemma 4.15 then follows from statement (b) with q = 1,
t′1 = t′, s = 0, and ψ = eM2

.

(a) ⇐ (b) : by case analysis on t′ ∈ T∆∪{�,?}:

t′ = � t′1 for some t′1 ∈ T∆∪{�,?}:
straightforward, using that rhsM�?→◦

2
,g,� = ◦ (g v1 z1 · · · zs) and rhsM�→•

2
,g,� =

• (g v1 z1 · · · zs), and applying induction hypothesis (a) for t′1.

t′ = ? t′1 for some t′1 ∈ T∆∪{�,?}:

|nf (⇒R�?→◦

2
, g (? t′1) η

◦
1 · · · η

◦
s)|◦ − |nf (⇒R�→•

2
, g (? t′1)[?

� �− id ] η•1 · · ·η
•
s)|•

= (by ⇒R�?→◦

2
, using that rhsM�?→◦

2
,g,? = g v1 (◦ z1) · · · (◦ zs), and by

substitution)

|nf (⇒R�?→◦

2
, g t′1 (◦ η◦1) · · · (◦ η◦s))|◦ − |nf (⇒R�→•

2
, g t′1[?

� �− id ] η•1 · · · η
•
s)|•

= (by induction hypothesis (a) for t′1, using that for every l ∈ [s],
|nf (⇒R�?→◦

2
, ◦ η◦l )|◦ − |nf (⇒R�→•

2
, η•l )|• = |nf (⇒R?•→◦•

2
, ◦ η◦−•

l )|◦−•, which
follows from the precondition on the η◦1, . . . , η

◦
s , η

•
1, . . . , η

•
s , η

◦−•
1 , . . . , η◦−•

s

by properties of | � |◦ and | � |◦−•)

|nf (⇒R?•→◦•

2
, g t′1[�

� �− id ][δ � �− • · δ | δ ∈ ∆] (◦ η◦−•
1 ) · · · (◦ η◦−•

s ))|◦−•

= (by ⇒R?•→◦•

2
, using that rhsM?•→◦•

2
,g,? = g v1 (◦ z1) · · · (◦ zs))

|nf (⇒R?•→◦•

2
, g (? t′1)[�

� �− id ][δ � �− • · δ | δ ∈ ∆] η◦−•
1 · · · η◦−•

s )|◦−•

t′ = δ′ t′1 · · · t
′
q for some δ′ ∈ ∆(q) and t′1, . . . , t

′
q ∈ T∆∪{�,?}:

straightforward, using that rhsM�?→◦

2
,g,δ′ = rhsM2,g,δ′, rhsM�→•

2
,g,δ′ = • rhsM2,g,δ′ ,

rhsM?•→◦•

2
,g,• = • (g v1 z1 · · · zs), and rhsM?•→◦•

2
,g,δ′ = rhsM2,g,δ′, and applying

induction hypothesis (b) with ψ = rhsM2,g,δ′.

(b) ⇐ (a) : for fixed s ∈
�
, η◦1 , . . . , η

◦
s , η

•
1, . . . , η

•
s , η

◦−•
1 , . . . , η◦−•

s ∈ TG∪∆∪Ω∪{�,?,◦,•}

with the associated precondition, by structural induction on ψ ∈ RHS (G,Ω, Vq,
Zs). The validity in the case ψ ∈ Zs follows from the precondition on the
η◦1 , . . . , η

◦
s , η

•
1, . . . , η

•
s , η

◦−•
1 , . . . , η◦−•

s . The case lab(ψ, ε) ∈ Ω is straightforward.
In the remaining case, ψ = g vj ψ1 · · ·ψs′ for some g ∈ G(s′+1), vj ∈ Vq, and
ψ1, . . . , ψs′ ∈ RHS (G,Ω, Vq, Zs), the induction hypotheses for the ψ1, . . . , ψs′ es-
tablish the precondition necessary to apply induction hypothesis (a) for t′j, which
suffices.

Proof of Lemma 4.22
For fixed κ : {(f, k) | f ∈ F (r+1), k ∈ [r]} −→ {0, . . . , smax} we prove the following
two statements:

(a) for every t ∈ TΣ:

For every f ∈ F (r+1):
nf (⇒R

→◦•,κ
1

, f t (◦κf,1 y1) · · · (◦κf,r yr)) = nf (⇒R→?•
1

, f t y1 · · · yr)[?
� �− ◦smax ].
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(b) for every p ∈
�

and t1, . . . , tp ∈ TΣ:

For every r ∈
�

and φ ∈ RHS (F,∆ ∪ {•}, Up, Yr):
nf (⇒R

→◦•,κ
1

, φ[f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]
[ui

� − ti | i ∈ [p]])
= nf (⇒R→?•

1
, φ[ui

� − ti | i ∈ [p]])[? � �− ◦smax ].

by simultaneous induction. Lemma 4.22 then follows from statement (b) with p = 1,
t1 = t, r = 0, and φ = eM1

[δ � �− • · δ | δ ∈ ∆], taking into account the definitions of
eM

→◦•,κ
1

and eM→?•
1

.

(a) ⇐ (b) : Assume t = σ t1 · · · tp for σ ∈ Σ(p) and t1, . . . , tp ∈ TΣ. We calculate:

nf (⇒R
→◦•,κ
1

, f (σ t1 · · · tp) (◦κf,1 y1) · · · (◦κf,r yr))

= (by ⇒R
→◦•,κ
1

, using the definition of rhsM
→◦•,κ
1

,f,σ)

nf (⇒R
→◦•,κ
1

, rhsM1,f,σ[δ � �− • · δ | δ ∈ ∆]
[f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]
[ui

� − ti | i ∈ [p],
yk

� − ◦κf,k (◦κf,k yk) | k ∈ [r]])

= (by statement (b) from the proof of Lemma 2.6 for the mtt M→◦•,κ
1 , with

φ = rhsM1,f,σ[δ
� �− • · δ | δ ∈ ∆]

[f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)] ,
and κf,k + κf,k = smax for every k ∈ [r])

nf (⇒R
→◦•,κ
1

, rhsM1,f,σ[δ � �− • · δ | δ ∈ ∆]
[f ′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]
[ui

� − ti | i ∈ [p]])[yk
� − ◦smax yk | k ∈ [r]]

= (by induction hypothesis (b) with φ = rhsM1,f,σ[δ
� �− • · δ | δ ∈ ∆])

nf (⇒R→?•
1

, rhsM1,f,σ[δ
� �− • · δ | δ ∈ ∆][ui

� − ti | i ∈ [p]])[? � �− ◦smax ]
[yk

� − ◦smax yk | k ∈ [r]]

= (by statement (b) from the proof of Lemma 2.6 for the mtt M→?•
1 , with

φ = rhsM1,f,σ[δ
� �− • · δ | δ ∈ ∆], and properties of substitution)

nf (⇒R→?•
1

, rhsM1,f,σ[δ
� �− • · δ | δ ∈ ∆][ui

� − ti | i ∈ [p],
yk

� − ? yk | k ∈ [r]])[? � �− ◦smax ]

= (by ⇒R→?•
1

, using the definition of rhsM→?•
1

,f,σ)

nf (⇒R→?•
1

, f (σ t1 · · · tp) y1 · · ·yr)[?
� �− ◦smax ]

(b) ⇐ (a) : for fixed r ∈
�

by structural induction on φ ∈ RHS (F,∆∪{•}, Up, Yr).
The cases φ ∈ Yr and lab(φ, ε) ∈ ∆ ∪ {•} are straightforward. The validity in the
remaining case is proved as follows.

φ = f ui′ φ1 · · ·φr′′ for some f ∈ F (r′′+1), ui′ ∈ Up, and φ1, . . . , φr′′ ∈ RHS (F,∆ ∪
{•}, Up, Yr):

nf (⇒R
→◦•,κ
1

, (f ui′ φ1 · · ·φr′′)[f
′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]

[ui
� − ti | i ∈ [p]])
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= (by properties of substitution)

nf (⇒R
→◦•,κ
1

, (f ui′ (◦κf,1 y1) · · · (◦κf,r′′ yr′′))
[ui

� − ti | i ∈ [p],
yk

� − φk[f
′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]

[ui
� − ti | i ∈ [p]] | k ∈ [r′′]])

= (by statement (b) from the proof of Lemma 2.6 for the mtt M→◦•,κ
1 , with

φ = f ui′ (◦κf,1 y1) · · · (◦κf,r′′ yr′′))

nf (⇒R
→◦•,κ
1

, (f ui′ (◦κf,1 y1) · · · (◦κf,r′′ yr′′))[ui
� − ti | i ∈ [p]])

[yk
� − nf (⇒R

→◦•,κ
1

, φk[f
′ � �− f ′ · (id × ◦κf ′,1 × · · · × ◦κf ′,r′ ) | f ′ ∈ F (r′+1)]

[ui
� − ti | i ∈ [p]]) | k ∈ [r′′]]

= (by substitution, induction hypothesis (a) for ti′ , and the induction
hypotheses for the φ1, . . . , φr′′)

nf (⇒R→?•
1

, f ti′ y1 · · ·yr′′)[?
� �− ◦smax ]

[yk
� − nf (⇒R→?•

1
, φk[ui

� − ti | i ∈ [p]])[? � �− ◦smax ] | k ∈ [r′′]]

= (by properties of substitution and statement (a) from the proof of
Lemma 2.6 for the mtt M→?•

1 )

nf (⇒R→?•
1

, (f ui′ φ1 · · ·φr′′)[ui
� − ti | i ∈ [p]])[? � �− ◦smax ]

The following two auxiliary lemmas are needed in the proofs of Lemmas 4.23, 4.31,
and 4.33 (and thus indirectly also in that of Lemma 4.36).

Lemma A.1 (auxiliary, later to be instantiated for M ?•→◦•
2 and M◦•→◦•

2 )
Let M ′

2 = (G,∆′,Ω ∪ {◦, •}, e, R′
2) be an mtt that uses context variables from Z.

For every g ∈ G(s+1), t′ ∈ T∆′ , and η1, . . . , ηs ∈ TG∪∆′∪Ω∪{◦,•}(Z):1

|nf (⇒R′

2
, g t′ η1 · · · ηs)|◦−•

= |nf (⇒R′

2
, g t′ z1 · · · zs)|◦−• +

∑

l∈[s]

|nf (⇒R′

2
, g t′ z1 · · · zs)|zl

∗ |nf (⇒R′

2
, ηl)|◦−•.

The same holds with | � |◦ or | � |•−◦ = | � |• − | � |◦ instead of | � |◦−• = | � |◦ − | � |•.

Proof
By statement (a) from the proof of Lemma 2.6 for the mtt M ′

2, and obvious prop-
erties of | � |◦−•, | � |◦, | � |•−◦, and substitution.

Lemma A.2 (auxiliary)
LetM?•→◦•

2 = (G,∆∪{?, •},Ω∪{◦, •}, eM2
, R?•→◦•

2 ) andM◦•→◦•
2 = (G,∆∪{◦, •},Ω∪

{◦, •}, eM2
, R◦•→◦•

2 ) be the mtts from Definitions 4.13 and 4.20, respectively. For
every g ∈ G(s+1) and l ∈ [s]:

1. for every t′ ∈ T∆∪{?,•} and t′′ ∈ T∆∪{◦,•} with t′[? � �− id ] = t′′[◦ � �− id ]:
|nf (⇒R?•→◦•

2
, g t′ z1 · · · zs)|zl

= |nf (⇒R◦•→◦•

2
, g t′′ z1 · · · zs)|zl

1To minimize the need for brackets when writing sum formulae, we will use the conventions
that ∗ binds stronger than a

∑
to the left of it, while

∑
binds stronger than +, so that, e.g., an

expression of the form
∑

a ∗ b + c ∗
∑

d ∗ e is parsed as
(∑

(a ∗ b)
)

+ c ∗
(∑

(d ∗ e)
)
.
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2. for every t′, t′′ ∈ T∆∪{◦,•} with t′[• � �− id ] = t′′[• � �− id ]:
|nf (⇒R◦•→◦•

2
, g t′ z1 · · · zs)|zl

= |nf (⇒R◦•→◦•

2
, g t′′ z1 · · · zs)|zl

.

Proof

1. |nf (⇒R?•→◦•

2
, g t′ z1 · · · zs)|zl

= (since, due to the rules in R?•→◦•
2 ,

nf (⇒R?•→◦•

2
, g t′[? � �− id ] z1 · · · zs) = nf (⇒R?•→◦•

2
, g t′ z1 · · · zs)[◦

� �− id ])

|nf (⇒R?•→◦•

2
, g t′[? � �− id ] z1 · · · zs)|zl

= (by t′[? � �− id ] = t′′[◦ � �− id ] ∈ T∆∪{•} and the fact that restricting R?•→◦•
2

and R◦•→◦•
2 , respectively, to rules at elements of ∆ ∪ {•} leads to

identical rule sets)

|nf (⇒R◦•→◦•

2
, g t′′[◦ � �− id ] z1 · · · zs)|zl

= (since, due to the rules in R◦•→◦•
2 ,

nf (⇒R◦•→◦•

2
, g t′′[◦ � �− id ] z1 · · · zs) = nf (⇒R◦•→◦•

2
, g t′′ z1 · · · zs)[◦

� �− id ])

|nf (⇒R◦•→◦•

2
, g t′′ z1 · · · zs)|zl

2. Similar, but slightly simpler.

Proof of Lemma 4.23
For a context-linear mtt M2 we prove the following two statements:

(a) for every t′ ∈ T∆∪{?,•}:

For every g ∈ G(s+1):
|nf (⇒R?•→◦•

2
, g t′ z1 · · · zs)|◦−• ≤ |nf (⇒R◦•→◦•

2
, g t′[? � �− ◦smax ] z1 · · · zs)|◦−•.

(b) for every q ∈
�

and t′1, . . . , t
′
q ∈ T∆∪{?,•}:

For every s ∈
�

and ψ ∈ RHS (G,Ω, Vq, Zs):
|nf (⇒R?•→◦•

2
, ψ[vj

� − t′j | j ∈ [q]])|◦−•

≤ |nf (⇒R◦•→◦•

2
, ψ[vj

� − t′j[?
� �− ◦smax ] | j ∈ [q]])|◦−•.

by simultaneous induction. Lemma 4.23 then follows from statement (b) with q = 1,
t′1 = t′, s = 0, and ψ = eM2

.

(a) ⇐ (b) : by case analysis on t′ ∈ T∆∪{?,•}:

t′ = ? t′1 for some t′1 ∈ T∆∪{?,•}:

|nf (⇒R?•→◦•

2
, g (? t′1) z1 · · · zs)|◦−•

= (by ⇒R?•→◦•

2
, using that rhsM?•→◦•

2
,g,? = g v1 (◦ z1) · · · (◦ zs))

|nf (⇒R?•→◦•

2
, g t′1 (◦ z1) · · · (◦ zs))|◦−•

= (by Lemma A.1 for the mtt M ?•→◦•
2 )

|nf (⇒R?•→◦•

2
, g t′1 z1 · · · zs)|◦−• +

∑

l∈[s]

|nf (⇒R?•→◦•

2
, g t′1 z1 · · · zs)|zl

∗ |nf (⇒R?•→◦•

2
, ◦ zl)|◦−•

≤ (by Lemma 2.5(1) for the mtt M ?•→◦•
2 and properties of | � |◦−•)
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|nf (⇒R?•→◦•

2
, g t′1 z1 · · · zs)|◦−• +

∑

l∈[s]

1

≤ (by induction hypothesis (a) for t′1 and
∑

l∈[s]

1 = s ≤ smax )

|nf (⇒R◦•→◦•

2
, g t′1[?

� �− ◦smax ] z1 · · · zs)|◦−• + smax

= (by substitution and ⇒smax

R◦•→◦•

2

, using that rhsM◦•→◦•

2
,g,◦ = ◦ (g v1 z1 · · · zs),

and by properties of | � |◦−•)

|nf (⇒R◦•→◦•

2
, g (? t′1)[?

� �− ◦smax ] z1 · · · zs)|◦−•

t′ = • t′1 for some t′1 ∈ T∆∪{?,•}:
straightforward, using that rhsM?•→◦•

2
,g,• = rhsM◦•→◦•

2
,g,• = • (g v1 z1 · · · zs) and

applying induction hypothesis (a) for t′1.

t′ = δ t′1 · · · t
′
q for some δ ∈ ∆(q) and t′1, . . . , t

′
q ∈ T∆∪{?,•}:

straightforward, using that rhsM?•→◦•

2
,g,δ = rhsM◦•→◦•

2
,g,δ = rhsM2,g,δ and applying

induction hypothesis (b) with ψ = rhsM2,g,δ.

(b) ⇐ (a) : for fixed s ∈
�

by structural induction on ψ ∈ RHS (G,Ω, Vq, Zs). The
cases ψ ∈ Zs and lab(ψ, ε) ∈ Ω are straightforward. The validity in the remaining
case is proved as follows.

ψ = g vj′ ψ1 · · ·ψs′ for some g ∈ G(s′+1), vj′ ∈ Vq, ψ1, . . . , ψs′ ∈ RHS (G,Ω, Vq, Zs):

|nf (⇒R?•→◦•

2
, (g vj′ ψ1 · · ·ψs′)[vj

� − t′j | j ∈ [q]])|◦−•

= (by substitution and Lemma A.1 for the mtt M ?•→◦•
2 )

|nf (⇒R?•→◦•

2
, g t′j′ z1 · · · zs′)|◦−•

+
∑

l′∈[s′]

|nf (⇒R?•→◦•

2
, g t′j′ z1 · · · zs′)|zl′

∗ |nf (⇒R?•→◦•

2
, ψl′[vj

� − t′j | j ∈ [q]])|◦−•

≤ (by induction hypothesis (a) for t′j′ and Lemma A.2(1))

|nf (⇒R◦•→◦•

2
, g t′j′[?

� �− ◦smax ] z1 · · · zs′)|◦−•

+
∑

l′∈[s′]

|nf (⇒R◦•→◦•

2
, g t′j′[?

� �− ◦smax ] z1 · · · zs′)|zl′

∗ |nf (⇒R?•→◦•

2
, ψl′[vj

� − t′j | j ∈ [q]])|◦−•

≤ (by the induction hypotheses for the ψ1, . . . , ψs′)

|nf (⇒R◦•→◦•

2
, g t′j′[?

� �− ◦smax ] z1 · · · zs′)|◦−•

+
∑

l′∈[s′]

|nf (⇒R◦•→◦•

2
, g t′j′[?

� �− ◦smax ] z1 · · · zs′)|zl′

∗ |nf (⇒R◦•→◦•

2
, ψl′[vj

� − t′j[?
� �− ◦smax ] | j ∈ [q]])|◦−•

= (by substitution and Lemma A.1 for the mtt M ◦•→◦•
2 )

|nf (⇒R◦•→◦•

2
, (g vj′ ψ1 · · ·ψs′)[vj

� − t′j[?
� �− ◦smax ] | j ∈ [q]])|◦−•

Proof of Lemma 4.31
For an atmost mtt M2 we prove the following two statements:

(a) for every θ ∈ T∆∪{◦,•}:

For every θ′ ∈ T∆∪{◦,•} with θ ⇒∗
{• v → v} θ

′ and every g ∈ G(s+1):

|nf (⇒R◦•→◦•

2
, g θ z1 · · · zs)|•−◦ − |nf (⇒R◦•→◦•

2
, g θ′ z1 · · · zs)|•−◦ ≤ |θ|• − |θ′|•.
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(b) for every q ∈
�

and θ1, . . . , θq ∈ T∆∪{◦,•}:

For every θ′1, . . . , θ
′
q ∈ T∆∪{◦,•} with θj ⇒

∗
{• v → v} θ

′
j for every j ∈ [q], for every

s ∈
�

and ψ ∈ RHS (G,Ω, Vq, Zs), if M2 is context-linear or ψ contains no
nested calls, then:

|nf (⇒R◦•→◦•

2
, ψ[vj

� − θj | j ∈ [q]])|•−◦

− |nf (⇒R◦•→◦•

2
, ψ[vj

� − θ′j | j ∈ [q]])|•−◦

≤
∑

j∈[q]

|ψ|vj
∗ (|θj|• − |θ′j|•).

by simultaneous induction. The first statement of Lemma 4.31 then follows from
statement (a), taking into account that |%|•−◦ = −|%|◦−• for every % ∈ TΩ∪{◦,•}(Z).
The second statement of Lemma 4.31, for atleast M2, is obtained correspondingly
after replacing all occurrences of ≤ and “-linear” by ≥ and “-nondeleting”, respec-
tively, in the above statements and the following proof.

(a) ⇐ (b) : by case analysis on θ ∈ T∆∪{◦,•} and θ ⇒∗
{• v → v} θ

′:

θ = • θ1, θ
′ = θ′1 for some θ1, θ

′
1 ∈ T∆∪{◦,•} with θ1 ⇒

∗
{• v → v} θ

′
1:

|nf (⇒R◦•→◦•

2
, g (• θ1) z1 · · · zs)|•−◦ − |nf (⇒R◦•→◦•

2
, g θ′1 z1 · · · zs)|•−◦

= (by ⇒R◦•→◦•

2
and properties of | � |•−◦)

1 + |nf (⇒R◦•→◦•

2
, g θ1 z1 · · · zs)|•−◦ − |nf (⇒R◦•→◦•

2
, g θ′1 z1 · · · zs)|•−◦

≤ (by induction hypothesis (a) for θ1 ⇒
∗
{• v → v} θ

′
1)

1 + |θ1|• − |θ′1|•
= (by properties of | � |•)

|• θ1|• − |θ′1|•

θ = ◦ θ1, θ
′ = ◦ θ′1 for some θ1, θ

′
1 ∈ T∆∪{◦,•} with θ1 ⇒

∗
{• v → v} θ

′
1:

straightforward, using that rhsM◦•→◦•

2
,g,◦ = ◦ (g v1 z1 · · · zs) and applying induc-

tion hypothesis (a) for θ1 ⇒
∗
{• v → v} θ

′
1.

θ = • θ1, θ
′ = • θ′1 for some θ1, θ

′
1 ∈ T∆∪{◦,•} with θ1 ⇒

∗
{• v → v} θ

′
1:

analogous to the previous case.

θ = δ θ1 · · · θq, θ
′ = δ θ′1 · · · θ

′
q for some δ ∈ ∆(q) and θ1, . . . , θq, θ

′
1, . . . , θ

′
q ∈ T∆∪{◦,•}

with θj ⇒
∗
{• v → v} θ

′
j for every j ∈ [q]:

|nf (⇒R◦•→◦•

2
, g (δ θ1 · · · θq) z1 · · · zs)|•−◦

−|nf (⇒R◦•→◦•

2
, g (δ θ′1 · · · θ

′
q) z1 · · · zs)|•−◦

= (by (twice) ⇒R◦•→◦•

2
, using that rhsM◦•→◦•

2
,g,δ = rhsM2,g,δ)

|nf (⇒R◦•→◦•

2
, rhsM2,g,δ[vj

� − θj | j ∈ [q]])|•−◦

−|nf (⇒R◦•→◦•

2
, rhsM2,g,δ[vj

� − θ′j | j ∈ [q]])|•−◦

≤ (by induction hypothesis (b) with ψ = rhsM2,g,δ, using that M2 is context-
linear or M2 is basic, in which case rhsM2,g,δ contains no nested calls)

∑

j∈[q]

|rhsM2,g,δ|vj
∗ (|θj|• − |θ′j|•)

≤ (by |rhsM2,g,δ|vj
≤ 1 for every j ∈ [q] (since M2 is recursion-linear),
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using that |θj|• − |θ′j|• ≥ 0 due to θj ⇒
∗
{• v → v} θ

′
j for every j ∈ [q])

∑

j∈[q]

(|θj|• − |θ′j|•)

= (by properties of | � |•)

|δ θ1 · · · θq|• − |δ θ′1 · · · θ
′
q|•

(b) ⇐ (a) : for fixed θ′1, . . . , θ
′
q ∈ T∆∪{◦,•} with the associated precondition, for

fixed s ∈
�

by structural induction on ψ ∈ RHS (G,Ω, Vq, Zs). The cases ψ ∈ Zs

and lab(ψ, ε) ∈ Ω are straightforward. The remaining case is proved as follows.

ψ = g vj′ ψ1 · · ·ψs′ for some g ∈ G(s′+1), vj′ ∈ Vq, ψ1, . . . , ψs′ ∈ RHS (G,Ω, Vq, Zs):

|nf (⇒R◦•→◦•

2
, (g vj′ ψ1 · · ·ψs′)[vj

� − θj | j ∈ [q]])|•−◦

−|nf (⇒R◦•→◦•

2
, (g vj′ ψ1 · · ·ψs′)[vj

� − θ′j | j ∈ [q]])|•−◦

= (by substitution and Lemma A.1 for the mtt M ◦•→◦•
2 , twice)

|nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|•−◦ − |nf (⇒R◦•→◦•

2
, g θ′j′ z1 · · · zs′)|•−◦

+
∑

l′∈[s′]

|nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|zl′

∗ |nf (⇒R◦•→◦•

2
, ψl′[vj

� − θj | j ∈ [q]])|•−◦

−
∑

l′∈[s′]

|nf (⇒R◦•→◦•

2
, g θ′j′ z1 · · · zs′)|zl′

∗ |nf (⇒R◦•→◦•

2
, ψl′[vj

� − θ′j | j ∈ [q]])|•−◦

≤ (by induction hypothesis (a) for θj′ ⇒
∗
{• v → v} θ

′
j′ and Lemma A.2(2))

|θj′|• − |θ′j′|• +
∑

l′∈[s′]

|nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|zl′

∗ (|nf (⇒R◦•→◦•

2
, ψl′ [vj

� − θj | j ∈ [q]])|•−◦

−|nf (⇒R◦•→◦•

2
, ψl′[vj

� − θ′j | j ∈ [q]])|•−◦)

≤ (by the induction hypotheses for the ψ1, . . . , ψs′ , using that if
ψ = g vj′ ψ1 · · ·ψs′ contains no nested calls, then neither does any of the
ψ1, . . . , ψs′)

|θj′|• − |θ′j′|• +
∑

l′∈[s′]

|nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|zl′

∗
∑

j∈[q]

|ψl′|vj
∗ (|θj|• − |θ′j|•)

≤ (by sum manipulation and |nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|zl′

∗ |ψl′|vj
≤ |ψl′|vj

for every l′ ∈ [s′] and j ∈ [q] (see below), using that |θj|• − |θ′j|• ≥ 0 due
to θj ⇒

∗
{• v → v} θ

′
j)

|θj′|• − |θ′j′|• +
∑

l′∈[s′]

∑

j∈[q]

|ψl′|vj
∗ (|θj|• − |θ′j|•)

= (by properties of | � |vj
and sum manipulation)

∑

j∈[q]

|g vj′ ψ1 · · ·ψs′|vj
∗ (|θj|• − |θ′j|•)

The statement, used above, that for every l′ ∈ [s′] and j ∈ [q],

|nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|zl′

∗ |ψl′|vj
≤ |ψl′|vj

,

follows from the precondition that M2, and hence also M ◦•→◦•
2 , is context-linear

or ψ = g vj′ ψ1 · · ·ψs′ contains no nested calls, since in the former case,

|nf (⇒R◦•→◦•

2
, g θj′ z1 · · · zs′)|zl′

≤ 1

by Lemma 2.5 for M ◦•→◦•
2 , while in the latter case |ψl′|vj

= 0.
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Proof of Lemma 4.33
Let M→◦•

1 = (F,Σ,∆ ∪ {◦, •}, eM→◦•

1
, R→◦•

1 ) and M→◦•′

1 = (F,Σ,∆ ∪ {◦, •}, eM→◦•′

1

,

R→◦•′

1 ) be in M→◦•
1 , where M→◦•

1 ;EM1,M2
M→◦•′

1 . We prove the following two
statements (a) and (b):

(a) for every t ∈ TΣ:

For every f ∈ F (r+1) and θ1, . . . , θr, θ
′
1, . . . , θ

′
r ∈ T∆∪{◦,•},

if for every k ∈ [r], g ∈ G(s+1), and η1, . . . , ηs, η
′
1, . . . , η

′
s ∈ TG∪Ω∪∆∪{◦,•} from

|nf (⇒R◦•→◦•

2
, ηl)|◦−• ≤ |nf (⇒R◦•→◦•

2
, η′l)|◦−• for every l ∈ [s] follows that

|nf (⇒R◦•→◦•

2
, g θk η1 · · · ηs)|◦−• ≤ |nf (⇒R◦•→◦•

2
, g θ′k η

′
1 · · ·η

′
s)|◦−• ,

then for every g ∈ G(s+1) and η1, . . . , ηs, η
′
1, . . . , η

′
s ∈ TG∪Ω∪∆∪{◦,•} with |nf (

⇒R◦•→◦•

2
, ηl)|◦−• ≤ |nf (⇒R◦•→◦•

2
, η′l)|◦−• for every l ∈ [s]:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, f t θ1 · · · θr) η1 · · · ηs)|◦−•

≤ |nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•′

1

, f t θ′1 · · · θ
′
r) η

′
1 · · ·η

′
s)|◦−•.

(b) for every p ∈
�

and t1, . . . , tp ∈ TΣ:

For every r ∈
�

and θ1, . . . , θr, θ
′
1, . . . , θ

′
r ∈ T∆∪{◦,•},

if for every k ∈ [r], g ∈ G(s+1), and η1, . . . , ηs, η
′
1, . . . , η

′
s ∈ TG∪Ω∪∆∪{◦,•} from

|nf (⇒R◦•→◦•

2
, ηl)|◦−• ≤ |nf (⇒R◦•→◦•

2
, η′l)|◦−• for every l ∈ [s] follows that

|nf (⇒R◦•→◦•

2
, g θk η1 · · · ηs)|◦−• ≤ |nf (⇒R◦•→◦•

2
, g θ′k η

′
1 · · ·η

′
s)|◦−• ,

then the following statements (i) and (ii) hold:

(i) for every φ ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr):

For every φ′ ∈ RHS (F,∆∪{◦, •}, Up, Yr) with φ⇒?
EM1,M2

φ′, for every g ∈

G(s+1) and η1, . . . , ηs, η
′
1, . . . , η

′
s ∈ TG∪Ω∪∆∪{◦,•} with |nf (⇒R◦•→◦•

2
, ηl)|◦−•

≤ |nf (⇒R◦•→◦•

2
, η′l)|◦−• for every l ∈ [s]:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, φ[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · · ηs)|◦−•

≤ |nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, φ′[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) η′1 · · · η

′
s)|◦−•.

(ii) for every q ∈
�

and φ1, . . . , φq ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr):

For every φ′
1, . . . , φ

′
q ∈ RHS (F,∆∪{◦, •}, Up, Yr) with φj ⇒

?
EM1,M2

φ′
j for

every j ∈ [q], for every s ∈
�

and η1, . . . , ηs, η
′
1, . . . , η

′
s ∈ TG∪Ω∪∆∪{◦,•}

with |nf (⇒R◦•→◦•

2
, ηl)|◦−• ≤ |nf (⇒R◦•→◦•

2
, η′l)|◦−• for every l ∈ [s], for

every ψ ∈ RHS (G,Ω, Vq, Zs):

|nf (⇒R◦•→◦•

2
, ψ[vj

� − nf (⇒R→◦•

1
, φj[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) | j ∈ [q],
zl

� − ηl | l ∈ [s]])|◦−•

≤ |nf (⇒R◦•→◦•

2
, ψ[vj

� − nf (⇒R→◦•′

1

, φ′
j[ui

� − ti | i ∈ [p],
yk

� − θ′k | k ∈ [r]]) | j ∈ [q],
zl

� − η′l | l ∈ [s]])|◦−•.
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by simultaneous induction, where the two statements (i) and (ii) nested inside (b)
are also proved by simultaneous induction. Lemma 4.33 then follows from statement
(b)(ii) with p = 1, r = 0, q = 1, φ1 = eM→◦•

1
, φ′

1 = e
M→◦•′

1

, s = 0, and ψ = eM2
.

(a) ⇐ (b) : Assume t = σ t1 · · · tp for σ ∈ Σ(p) and t1, . . . , tp ∈ TΣ. We calculate:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, f (σ t1 · · · tp) θ1 · · · θr) η1 · · · ηs)|◦−•

= (by ⇒R→◦•

1
)

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, rhsM→◦•

1
,f,σ[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · · ηs)|◦−•

≤ (by statement (i) of induction hypothesis (b)
with φ = rhsM→◦•

1
,f,σ ⇒?

EM1,M2

rhsM→◦•′

1
,f,σ = φ′)

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•′

1

, rhsM→◦•′

1
,f,σ[ui

� − ti | i ∈ [p],
yk

� − θ′k | k ∈ [r]]) η′1 · · · η
′
s)|◦−•

= (by ⇒
R→◦•′

1

)

|nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, f (σ t1 · · · tp) θ
′
1 · · · θ

′
r) η

′
1 · · · η

′
s)|◦−•

(b) ⇐ (a) : for fixed r ∈
�

and θ1, . . . , θr, θ
′
1, . . . , θ

′
r ∈ T∆∪{◦,•} with the associated

precondition, by simultaneous induction of (i) and (ii):

(i) ⇐ (ii) : by case analysis on φ ∈ RHS (F,∆∪{◦, •}, Up, Yr) and φ⇒?
EM1,M2

φ′:

φ = φ′ = yk ∈ Yr :

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, yk[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · ·ηs)|◦−•

= (by substitution and since θk ∈ T∆∪{◦,•} is a normal form w.r.t. ⇒R→◦•

1
)

|nf (⇒R◦•→◦•

2
, g θk η1 · · · ηs)|◦−•

≤ (by the preconditions for θk, θ
′
k and for η1, . . . , ηs, η

′
1, . . . , η

′
s)

|nf (⇒R◦•→◦•

2
, g θ′k η

′
1 · · · η

′
s)|◦−•

= (by substitution and since θ′k ∈ T∆∪{◦,•} is a normal form w.r.t. ⇒R→◦•′

1

)

|nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, yk[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) η′1 · · · η

′
s)|◦−•

φ = ◦ φ1, φ
′ = ◦ φ′

1 for φ1, φ
′
1 ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr) with φ1 ⇒

?
EM1,M2

φ′
1:

straightforward, using that rhsM◦•→◦•

2
,g,◦ = ◦ (g v1 z1 · · · zs) and applying

induction hypothesis (i) for φ1 ⇒
?
EM1,M2

φ′
1.

φ = • φ1, φ
′ = • φ′

1 for φ1, φ
′
1 ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr) with φ1 ⇒

?
EM1,M2

φ′
1:

analogous to the previous case.

φ = δ φ1 · · ·φq, φ
′ = δ φ′

1 · · ·φ
′
q for some δ ∈ ∆(q) and φ1, . . . , φq, φ

′
1, . . . , φ

′
q ∈

RHS (F,∆ ∪ {◦, •}, Up, Yr) with φj ⇒
?
EM1,M2

φ′
j for every j ∈ [q]:

straightforward, using that rhsM◦•→◦•

2
,g,δ = rhsM2,g,δ and applying induction

hypothesis (ii) with ψ = rhsM2,g,δ.
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φ = f ui′ φ1 · · ·φr′, φ
′ = f ui′ φ

′
1 · · ·φ

′
r′ for f ∈ F (r′+1), ui′ ∈ Up, φ1, . . . , φr′,

φ′
1, . . . , φ

′
r′ ∈ RHS (F,∆∪ {◦, •}, Up, Yr) with φk ⇒?

EM1,M2

φ′
k for every k ∈ [r′]:

the induction hypotheses (i) for φ1 ⇒
?
EM1,M2

φ′
1, . . . , φr′ ⇒

?
EM1,M2

φ′
r′ establish

the precondition necessary to apply induction hypothesis (a) for ti′ , which
suffices.

φ = • (◦ φ1), φ
′ = φ1 for some φ1 ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr):

straightforward, using that rhsM◦•→◦•

2
,g,• = • (g v1 z1 · · · zs) and rhsM◦•→◦•

2
,g,◦ =

◦ (g v1 z1 · · · zs), and applying induction hypothesis (i) for φ1 ⇒
?
EM1,M2

φ1.

φ = ◦ (• φ1), φ
′ = φ1 for some φ1 ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr):

analogous to the previous case.

φ = • (δ φ1 · · ·φq), φ
′ = δ φ1 · · · (• φj) · · ·φq for some δ ∈ ∆(q), φ1, . . . , φq ∈

RHS (F,∆ ∪ {◦, •}, Up, Yr), and j ∈ [q] with ↓δ,j ∈ EM1,M2
:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, (• (δ φ1 · · ·φq))[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · · ηs)|◦−•

= (by ⇒R◦•→◦•

2
, using that rhsM◦•→◦•

2
,g,• = • (g v1 z1 · · · zs), and by

properties of | � |◦−•)

−1 + |nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, (δ φ1 · · ·φq)[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · ·ηs)|◦−•

≤ (by induction hypothesis (i) for δ φ1 · · ·φq ⇒
?
EM1,M2

δ φ1 · · ·φq)

−1 + |nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•′

1

, (δ φ1 · · ·φq)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) η′1 · · · η

′
s)|◦−•

≤ (by Lemma A.1 for the mtt M ◦•→◦•
2 and Lemma 4.32(1a))

|nf (⇒R◦•→◦•

2
, g (δ nf (⇒

R→◦•′

1

, φ1[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

· · ·
(• nf (⇒

R→◦•′

1

, φj[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]))

· · ·
nf (⇒R→◦•′

1

, φq[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])) z1 · · · zs)|◦−•

+
∑

l∈[s]

|nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, (δ φ1 · · ·φq)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) z1 · · · zs)|zl

∗ |nf (⇒R◦•→◦•

2
, η′l)|◦−•

= (by Lemma A.1 for the mtt M ◦•→◦•
2 and Lemma A.2(2))

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•′

1

, (δ φ1 · · · (• φj) · · ·φq)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

η′1 · · ·η
′
s)|◦−•

φ = δ φ1 · · · (• φj) · · ·φq, φ
′ = • (δ φ1 · · ·φq) for some δ ∈ ∆(q), φ1, . . . , φq ∈

RHS (F,∆ ∪ {◦, •}, Up, Yr), and j ∈ [q] with ↑δ,j ∈ EM1,M2
:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, (δ φ1 · · · (• φj) · · ·φq)[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]])
η1 · · ·ηs)|◦−•
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≤ (straightforward, using that rhsM◦•→◦•

2
,g,δ = rhsM2,g,δ and applying

induction hypothesis (ii) with ψ = rhsM2,g,δ, taking into account that
φ1 ⇒

?
EM1,M2

φ1, . . . , • φj ⇒
?
EM1,M2

• φj, . . . , φq ⇒
?
EM1,M2

φq)

|nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, (δ φ1 · · · (• φj) · · ·φq)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

η′1 · · ·η
′
s)|◦−•

≤ (by Lemma A.1 for the mtt M ◦•→◦•
2 and Lemma 4.32(1b))

−1 + |nf (⇒R◦•→◦•

2
, g (δ nf (⇒R→◦•′

1

, φ1[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

· · ·
nf (⇒R→◦•′

1

, φq[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])) z1 · · · zs)|◦−•

+
∑

l∈[s]

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•′

1

, (δ φ1 · · · (• φj) · · ·φq)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

z1 · · · zs)|zl
∗ |nf (⇒R◦•→◦•

2
, η′l)|◦−•

= (by Lemma A.1 for the mtt M ◦•→◦•
2 , Lemma A.2(2), by ⇒R◦•→◦•

2
, using

that rhsM◦•→◦•

2
,g,• = • (g v1 z1 · · · zs), and by properties of | � |◦−•)

|nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, (• (δ φ1 · · ·φq))[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) η′1 · · ·η

′
s)|◦−•

φ = f ui′ φ1 · · · (• φk′) · · ·φr′, φ
′ = • (f ui′ φ1 · · ·φr′) for some f ∈ F (r′+1), ui′ ∈

Up, φ1, . . . , φr′ ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr), and k′ ∈ [r′] with ↑f,k′ ∈ EM1,M2
:

|nf (⇒R◦•→◦•

2
,

g nf (⇒R→◦•

1
, (f ui′ φ1 · · · (• φk′) · · ·φr′)[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · · ηs)|◦−•

≤ (by substitution, properties of nf , and induction hypothesis (a) for ti′ ,
using the induction hypotheses (i) for φ1 ⇒

?
EM1,M2

φ1, . . . ,

• φk′ ⇒?
EM1,M2

• φk′, . . . , φr′ ⇒
?
EM1,M2

φr′ to establish the necessary

precondition)

|nf (⇒R◦•→◦•

2
,

g nf (⇒
R→◦•′

1

, f ti′ nf (⇒
R→◦•′

1

, φ1[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

· · ·
nf (⇒R→◦•′

1

, (• φk′)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

· · ·
nf (⇒R→◦•′

1

, φr′[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])) η′1 · · ·η

′
s)|◦−•

≤ (by Lemma A.1 for the mtt M ◦•→◦•
2 , Lemma 4.32(2b) for the mtt

M→◦•′

1 , by substitution and properties of nf )
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−1 + |nf (⇒R◦•→◦•

2
,

g nf (⇒R→◦•′

1

, (f ui′ φ1 · · ·φr′)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) z1 · · · zs)|◦−•

+
∑

l∈[s]

|nf (⇒R◦•→◦•

2
,

g nf (⇒R→◦•′

1

, (f ui′ φ1 · · · (• φk′) · · ·φr′)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

z1 · · · zs)|zl
∗ |nf (⇒R◦•→◦•

2
, η′l)|◦−•

= (by Lemma A.1 for the mtt M ◦•→◦•
2 , Lemma A.2(2), by ⇒R◦•→◦•

2
, using

that rhsM◦•→◦•

2
,g,• = • (g v1 z1 · · · zs), and by properties of | � |◦−•)

|nf (⇒R◦•→◦•

2
,

g nf (⇒R→◦•′

1

, (• (f ui′ φ1 · · ·φr′))[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) η′1 · · · η

′
s)|◦−•

φ = • (f ui′ φ1 · · ·φr′), φ
′ = f ui′ φ1 · · · (• φk′) · · ·φr′ for some f ∈ F (r′+1), ui′ ∈

Up, φ1, . . . , φr′ ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr), and k′ ∈ [r′] with ↓f,k′ ∈ EM1,M2
:

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, (• (f ui′ φ1 · · ·φr′))[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]]) η1 · · · ηs)|◦−•

= (by ⇒R◦•→◦•

2
, using that rhsM◦•→◦•

2
,g,• = • (g v1 z1 · · · zs), and by

properties of | � |◦−•)

−1 + |nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•

1
, (f ui′ φ1 · · ·φr′)[ui

� − ti | i ∈ [p],
yk

� − θk | k ∈ [r]])
η1 · · · ηs)|◦−•

≤ (by induction hypothesis (i) for f ui′ φ1 · · ·φr′ ⇒
?
EM1,M2

f ui′ φ1 · · ·φr′)

−1 + |nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, (f ui′ φ1 · · ·φr′)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

η′1 · · · η
′
s)|◦−•

≤ (by Lemma A.1 for the mtt M ◦•→◦•
2 , substitution, properties of nf , and

Lemma 4.32(2a) for the mtt M→◦•′

1 )

|nf (⇒R◦•→◦•

2
, g nf (⇒R→◦•′

1

, f ti′ nf (⇒R→◦•′

1

, φ1[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

· · ·
(• nf (⇒

R→◦•′

1

, φk′[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]))

· · ·
nf (⇒

R→◦•′

1

, φr′[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]))

z1 · · · zs)|◦−•

+
∑

l∈[s]

|nf (⇒R◦•→◦•

2
, g nf (⇒

R→◦•′

1

, (f ui′ φ1 · · ·φr′)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]])

z1 · · · zs)|zl
∗ |nf (⇒R◦•→◦•

2
, η′l)|◦−•

= (by Lemma A.1 for the mtt M ◦•→◦•
2 , substitution, properties of nf , and

Lemma A.2(2))
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|nf (⇒R◦•→◦•

2
,

g nf (⇒R→◦•′

1

, (f ui′ φ1 · · · (• φk′) · · ·φr′)[ui
� − ti | i ∈ [p],

yk
� − θ′k | k ∈ [r]]) η′1 · · · η

′
s)|◦−•

(ii) ⇐ (i) : for fixed φ′
1, . . . , φ

′
q ∈ RHS (F,∆ ∪ {◦, •}, Up, Yr) with φj ⇒?

EM1,M2

φ′
j for every j ∈ [q], for fixed s ∈

�
and η1, . . . , ηs, η

′
1, . . . , η

′
s ∈ TG∪Ω∪∆∪{◦,•}

with |nf (⇒R◦•→◦•

2
, ηl)|◦−• ≤ |nf (⇒R◦•→◦•

2
, η′l)|◦−• for every l ∈ [s], by structural

induction on ψ ∈ RHS (G,Ω, Vq, Zs). The validity in the case ψ ∈ Zs follows
from the precondition on the η1, . . . , ηs, η

′
1, . . . , η

′
s. The case lab(ψ, ε) ∈ Ω is

straightforward. In the remaining case, ψ = g vj ψ1 · · ·ψs′ for some g ∈ G(s′+1),
vj ∈ Vq, and ψ1, . . . , ψs′ ∈ RHS (G,Ω, Vq, Zs), the induction hypotheses for the
ψ1, . . . , ψs′ establish the precondition necessary to apply induction hypothesis
(i) for φj ⇒

?
EM1,M2

φ′
j, which suffices.

Proof of Lemma 4.36
For atmost M2, we take the statements (a) and (b) and the simultaneous induction
establishing their validity in the proof of Lemma 4.31. We replace all occurrences
of ⇒∗

{• v → v}, | � |•, and | � |•−◦ by ⇒∗
{◦ v → v}, | � |◦, and | � |◦, respectively, and all oc-

currences of • θ1 by ◦ θ1 in the first case of (a) ⇐ (b). This yields again a valid
proof. We obtain

|τM◦•→◦•

2
(θ)|◦ − |τM◦•→◦•

2
(θ[◦ � �− id ])|◦ ≤ |eM2

|v1
∗ |θ|◦

from the thus adjusted statement (b) with q = 1, θ1 = θ, θ′1 = θ[◦ � �− id ], s = 0,
and ψ = eM2

, taking into account that M2 is context-linear or M2 is basic, in
which case eM2

contains no nested calls, and that |θ[◦ � �− id ]|◦ = 0. Lemma 4.36
then follows because |τM◦•→◦•

2
(θ[◦ � �− id ])|◦ = 0, given that the initial expression

eM2
∈ RHS (G,Ω, V1, ∅) of M◦•→◦•

2 contains no ◦-symbols and hence such symbols
in τM◦•→◦•

2
(θ[◦ � �− id ]) = nf (⇒R◦•→◦•

2
, eM2

[v1
� − θ[◦ � �− id ]]) could only originate from

right-hand sides of ◦-rules in R◦•→◦•
2 , which however are never applied due to the

fact that θ[◦ � �− id ] contains no ◦-symbols.


