ABSTRACT

Bidirectionalization is the task of automatically inferring one of two transformations that as a pair realize the forward and backward relationship between two domains, subject to certain consistency conditions. A specific technique, semantic bidirectionalization, has been developed that takes a get-function (mapping forwards from sources to views) as input—but does not inspect its syntactic definition—and constructs a put-function (mapping an original source and an updated view back to an updated source), guaranteeing standard well-behavedness conditions. Proofs of the latter have been done by hand in the original paper, and recently published extensions of the technique have also come with more or less rigorous proofs or sketches thereof.

In this paper we report on a formalization of the original technique in a dependently typed programming language (turned proof assistant). This yields a complete correctness proof, with no details left out. Besides demonstrating the viability of such a completely formal approach to bidirectionalization, we see further benefits:

1. Exploration of variations of the original technique could use our formalization as a base line, providing assurance about preservation of the well-behavedness properties as one makes adjustments.

2. Thanks to being presented in a very expressive type theory, the formalization itself already provides more information about the base technique than the original work. Specifically, while the original by-hand proofs established only a partial correctness result, useful preconditions for total correctness come out of the mechanized formalization.

3. Finally, also thanks to the very precise types, there is potential for generally improving the bidirectionalization technique itself. Particularly, shape-changing updates are known to be problematic for semantic bidirectionalization, but a refined technique could leverage the information about the relationship between the shapes of sources and views now being expressed at the type level, in a way we very briefly sketch and plan to explore further.

1. INTRODUCTION

We are interested here in well-behaved, state-based, asymmetric lenses, in which both transformation parts of the BX are total functions. Formally, let S, V be sets. A lens in the above sense is a pair of total functions $\text{get}: S \to V$ and $\text{put}: S \times V \to S$ for which the following two properties hold:

$$\forall s \in S. \; \text{put}(s, \text{get}(s)) = s \quad (\text{GetPut})$$

$$\forall s \in S, v \in V. \; \text{get}(\text{put}(s, v)) = v \quad (\text{PutGet})$$

Specifically, we are interested in the case when get is a program in a pure functional programming language and put is another program in the same language that is automatically obtained from get somehow.

Voigtländer (2009) presented a concrete technique, semantic bidirectionalization, that lets the programmer write get in Haskell and delivers a suitable put for it. The technique is both general and restricted: general in that it works independently of the syntactic definition of get, and restricted in that it requires get to have a certain (parametrically polymorphic) type. Also, it comes at the price of partiality: even when get is indeed a total function, the delivered put is in general partial; and while GetPut indeed holds as given above, PutGet becomes conditioned by $\text{put}(s, v)$ actually being defined. Recent works have extended semantic bidirectionalization in various ways (Matsuda and Wang 2013; Voigtländer et al. 2013; Wang and Najd 2014), both to make it applicable to more get-functions (lifting restrictions on get’s type, thus allowing more varied behavior) and to make put (for a given get) defined on more inputs.

The original paper by Voigtländer (2009) gives proofs of the base technique, and papers about extensions of the technique also come with formal statements about correctness (i.e., about satisfying GetPut and PutGet) and proofs or proof sketches thereof. As is typical for by-hand proofs, details are left out and the reader is asked to believe that certain lemmas that are not explicitly proved do indeed hold and could in principle be proved by standard but tedious means. In the programming languages community there is a movement towards working more rigorously by using mechanized proof assistants to establish properties of programs (and of programming languages) in a fully formal way, see for example the PoplMark challenge (Aydemir et al. 2005). We report here on applying this way of thinking to the semantic bidirectionalization technique, which has led to a complete formalization (Grohne 2013), that moreover provides more precision concerning definedness of put than the previous proofs. The proof assistant we use is Agda, which at the same time is a pure functional programming language with...
an even more expressive type system than Haskell, and we take off from there to discuss further potential such expressivity has in making semantic bidirectionalization itself more useful.

2. LANGUAGE

Agda is what is called a dependently typed programming language. It is a descendant of Haskell, and it is implemented in and syntactically similar to Haskell. Based, like Haskell, on a typed λ-calculus, Agda additionally allows values to occur as parameters to types. This mixing of types and values enables us to encode properties into types, and thus the type checker is able to verify the correctness of proofs: statements are represented by types and a proof is represented by a term that has the desired type. For this to work out, a strong discipline is required so that the type checker’s logic remains consistent; in particular, all functions must be total— runtime errors as well as non-termination of programs are ruled out by a combination of syntactic means and type checking rules. We give a brief introduction to the language; a more comprehensive account is given by Norell (2008).

As mentioned, the line between types and values is blurred in a dependently typed language. As a first example, let us have a look at the identity function. We use a slightly simplified version of the definition from the standard library:\footnote{The id function is available in the Function module. Further footnotes about the origin of functions or types just mention the module name.}

\[
\text{id} : \{\alpha : \text{Set}\} \rightarrow \alpha \rightarrow \alpha
\]

\[
\text{id} x = x
\]

While the definition itself looks much the same as in any functional language, the type declaration is different from what one would have in Haskell, for example. That is because the availability of dependent types changes the way to express polymorphism. Instead of some convention treating certain names in a type (say, all lowercase identifiers) as type variables, we explicitly say here that \(\alpha\) shall be an element of \(\text{Set}\). The type \(\text{Set}\) contains all types that we will use, except for itself\footnote{Actually, Agda knows about a type that contains \(\text{Set}\), but we are not interested in it and further types outside \(\text{Set}\). Therefore, all citations from the standard library have their support for types beyond \(\text{Set}\) removed. Eliding those types allows us to give shorter type signatures.}.

The next notable difference in the type signature of \(\text{id}\) is the use of curly parentheses and the fact that it has two parameters instead of one. A parameter enclosed in curly parentheses is called \textit{implicit}. When the function is defined or used, implicit parameters are not named or given. Instead, the type system is supposed to figure out the values of these parameters. In the case of the identity function, the type of the explicit parameter will be the value of the implicit parameter. It is possible to define functions for which the type system cannot determine the values of implicit parameters. A type error will be caused in the application of such a function.

For brevity, we can declare multiple consecutive parameters of the same type without repeating the type, as can be seen in the constant function as given in the standard library\footnote{Function}.

\[
\text{const} : \{\alpha \beta : \text{Set}\} \rightarrow \alpha \rightarrow \beta \rightarrow \alpha
\]

\[
\text{const} x _ = x
\]

The underscore serves as a placeholder for parameters we do not care about.

Even though the identity and constant functions already use dependent types, these examples do not illustrate the benefits of this language feature. To that end, we will have a look at functions on the data types \(\text{Fin}\) and \(\text{Vec}\) soon. Data types are introduced by notation as follows.

\[
\text{data} \ \text{N} : \text{Set where}
\]

\[
\text{zero} : \text{N}
\]

\[
\text{suc} : \text{N} \rightarrow \text{N}
\]

This definition introduces the type of natural numbers as given in the standard library\footnote{Data Nat}. This type is named \(\text{N}\), is an element of \(\text{Set}\) and takes no arguments. It has two constructors, named \(\text{zero}\) and \(\text{suc}\), of which the latter takes a natural number as a constructor parameter. To write down elements of this type, we use constructors like functions and apply them to the required parameters. So \(\text{zero}\) and \(\text{suc zero}\) are examples for elements of \(\text{N}\).

Let us have a look at a data type with arguments. The type of finite numbers, as given in the standard library\footnote{Data Fin} takes an argument of type \(\text{N}\) and contains all numbers that are smaller than the argument.

\[
\text{data} \ \text{Fin} \ (\alpha : \text{Set}) : \text{Set where}
\]

\[
\text{zero} : \{ n : \text{N} \} \rightarrow \text{Fin} (\text{suc} n)
\]

\[
\text{suc} : \{ n : \text{N} \} \rightarrow \text{Fin} n \rightarrow \text{Fin} (\text{suc} n)
\]

We can see that declarations of the type and of constructors have the same syntax as function declarations. The names of the constructors here are shared with the \(\text{N}\) type. Overloading of names is allowed for constructors, because their types can often be inferred from the context. Therefore, the constructors of \(\text{Fin}\) use the \(\text{suc}\) constructor of \(\text{N}\) in their types. Also note that the type \(\text{Fin zero}\) has no elements.

The type of homogeneous sequences is also given in the standard library\footnote{Data List}.

\[
\text{data} \ \text{List} \ (\alpha : \text{Set}) : \text{Set where}
\]

\[
[_] : \text{List} \alpha
\]

\[
_ _ : \alpha \rightarrow \text{List} \alpha \rightarrow \text{List} \alpha
\]

Underscores have a special meaning when used in symbols. They denote the places where arguments shall be given in an application. For example, the list containing just the number zero can be written as \(\text{zeros} :: [_]\). Here we already have to disambiguate which \(\text{zero}\) we are referring to.

Like the \(\text{Fin}\) type, the \(\text{List}\) type takes one argument. However, this argument is given before the colon. We need to distinguish the places of arguments, because they serve different needs. An argument given after the colon is called \textit{data index}. Any symbols bound there are not visible in constructor type signatures. The actual values given for data indices can vary among constructors, as can be seen in the definition of \(\text{Fin}\). Arguments given before the colon are called \textit{data parameters}. They are written as a space-separated sequence, and each of them must be given a name. Symbols bound as data parameters can be used both in the types of data indices and in constructor type signatures. But no discrimination is allowed on data parameters: When declaring a constructor, they must appear unchanged in the result type of the
signature. Nor are data parameters turned into (implicit) arguments of the constructors. So functions cannot branch on them when evaluating an element of a data type.

It is also possible to combine data indices and data parameters. An example for this is the type of fixed-length homogeneous sequences as given in the standard library:

\[
\text{data } \text{Vec} \ (\alpha : \text{Set}) : \mathbb{N} \to \text{Set where}
\]
\[
[] : \text{Vec} \ \alpha \ \text{zero}
\]
\[
\text{-} : \ (\mathbb{n} : \mathbb{N}) \to \alpha \to \text{Vec} \ \alpha \ \mathbb{n} \to \text{Vec} \ \alpha \ (\text{suc} \ \mathbb{n})
\]
This definition has similarity to \text{Fin} and \text{List} and employs both a data parameter and a data index. Unlike in \text{Fin}, the base case \([\]\) is (only) constructible for a \text{zero} index instead of a \text{suc} \ \mathbb{n} index. So for each index value there is precisely one constructor with matching type.

When defining functions on data types, we want to branch on the constructors by \text{pattern matching}. A simple example is the length function from the standard library:

\[
\text{length} : \{\alpha : \text{Set}\} \to \text{List} \ \alpha \to \mathbb{N}
\]
\[
\text{length} [] = \text{zero}
\]
\[
\text{length} (_\ :: \ xs) = \text{succ} \ (\text{length} \ xs)
\]

Unlike in Haskell, definition clauses must not overlap. For instance, the following definition will be rejected for covering the case \text{zero} \ \text{zero} \ twice.

\[
\text{invalid-pattern-match} : \mathbb{N} \to \mathbb{N} \to \mathbb{N}
\]
\[
\text{invalid-pattern-match zero} = \text{zero}
\]
\[
\text{invalid-pattern-match zero} = \text{succ} \ \text{zero}
\]

It will also be rejected for not covering the case \text{(suc} \ \mathbb{i}) \ \text{(suc} \ \mathbb{j}) since all constructor combinations must be covered to meet the totality requirement.

Let us look at a truly dependently typed function now. A common task to perform on sequences is to retrieve an element from a given position. In Haskell, this can be done using the function \((!!) : [a] \to \text{Int} \to a\). When given a negative number or a number that exceeds the length of the list, this function fails at runtime. Such behavior is prohibited in Agda, so a literal translation of this function is not possible. Ideally, the bounds check should happen at compile time. So the \text{Vec} type is accompanied with a corresponding retrieval function in the standard library as follows:

\[
\text{lookup} : \{\alpha : \text{Set}\} \ (\mathbb{n} : \mathbb{N}) \to \text{Fin} \ \mathbb{n} \to \text{Vec} \ \alpha \ \mathbb{n} \to \alpha
\]
\[
\text{lookup} \ \text{zero} \ (x :: xs) = x
\]
\[
\text{lookup} \ (\text{suc} \ \mathbb{i}) \ (x :: xs) = \text{lookup} \ \mathbb{i} \ xs
\]

In the declaration, the implicit parameter \mathbb{n} is used as a type parameter in the remaining function parameters. Such appearance blends the type level and value level that are clearly separated in Haskell. As a notational remark, the arrows between parameters in a type signature can be omitted if the parameters are parenthesized. The declaration above therefore lacks the arrow separating the implicit parameters.

With the totality requirement in mind, the definition of \text{lookup} may seem incomplete, because we omitted the case of an empty \text{Vec}. But a closer look reveals that that case cannot happen. The type of \([\]\) is \text{Vec} \ \alpha \ \text{zero}, so it can only occur when \mathbb{n} is \text{zero}. There is no constructor for \text{Fin} \ \text{zero} however. The type checker is able to do this reasoning and recognizes that our definition actually covers all type-correct cases. Another example in a similar spirit is the definition of the \text{head} function from the standard library:

\[
\text{head} : \{\alpha : \text{Set}\} \ (\mathbb{n} : \mathbb{N}) \to \text{Vec} \ \alpha \ (\text{suc} \ \mathbb{n}) \to \alpha
\]
\[
\text{head} \ (x :: _) = x
\]

The input type \text{Vec} \ \alpha \ (\text{suc} \ \mathbb{n}) effectively expresses that only non-empty sequences can be passed—thus, no runtime error like for the corresponding Haskell function can occur.

For further familiarization, let us look at other polymorphic functions on \text{Lists} and/or \text{Vecs}. Our first example is to skip every other element of a sequence. When implemented using \text{Lists}, its type and implementation closely match what we would write in Haskell.

\[
\text{sieveList} : \{\alpha : \text{Set}\} \to \text{List} \ \alpha \to \text{List} \ \alpha
\]
\[
\text{sieveList} [] = []
\]
\[
\text{sieveList} (x :: []) = x :: []
\]
\[
\text{sieveList} (x :: _ :: xs) = x :: \text{sieveList} \ xs
\]

Writing it using \text{Vec} requires us to give a length expression for the result type. More precisely, we need a function that relates input length to output length, in this specific case computing the upwards rounded division by 2. It happens to be available from the standard library:

\[
\text{length} (_/2) : \mathbb{N} \to \mathbb{N}
\]
\[
\text{length} \text{zero}/2 = \text{zero}
\]
\[
\text{length} \text{suc zero}/2 = \text{suc} \text{zero}
\]
\[
\text{length} \ (\text{suc} \mathbb{n})/2 = \text{suc} \ (\text{length} \ \mathbb{n}/2)
\]

Equipped with this function, we can update the type of \text{sieve} while retaining the implementation.

\[
\text{sieveVec} : \{\alpha : \text{Set}\} \ (\mathbb{n} : \mathbb{N}) \to \text{Vec} \ \alpha \ \mathbb{n} \to \text{Vec} \ \alpha \ (\text{length} \ \mathbb{n}/2)
\]

As another example, we consider the function that reverses a size-indexed sequence. We can base our implementation on the dependently typed \text{left fold} as does the standard library:

\[
\text{reverseVec} : \{\alpha : \text{Set}\} \ (\mathbb{n} : \mathbb{N}) \to \text{Vec} \ \alpha \ \mathbb{n} \to \text{Vec} \ \alpha \ (\text{rev} \ (\text{length} \ \mathbb{n})/2)
\]

3. SEMANTIC BIDIRECTIONALIZATION

The Haskell version of semantic bidirectionalization, in its most simple form, works for functions of type \([a] \to [a]\), i.e., polymorphic \text{get}-functions on homogeneous lists. We want to translate the Haskell implementation of “put from get” given by Voigtlander (2009) to Agda, and redevelop the proofs of the well-behavedness lens laws in parallel. So we should first look at the type of the forward function in Agda. We can think of something like \text{sieve} or \text{reverse}, so a reasonably general type expressing both the polymorphism and the possible type-level information about lengths would look as follows:

\[
\text{get} : \{\alpha : \text{Set}\} \ (\mathbb{n} : \mathbb{N}) \to \text{Vec} \ \alpha \ \mathbb{n} \to \text{Vec} \ \alpha \ (!!)
\]

where \((!!)!\) is a hole that still needs to be filled by some expression. For the sake of maximal generality, we can turn the dependence of the output length on the input length into an explicit function, thus arriving at the following type:

\[
\text{get} : \Sigma (\mathbb{N} \to \mathbb{N})
\]
\[
(\lambda \text{getlen} \to \{\alpha : \text{Set}\} \ (\mathbb{n} : \mathbb{N}) \to \text{Vec} \ \alpha \ \mathbb{n} \to \text{Vec} \ \alpha \ (\text{getlen} \ \mathbb{n}))
\]
The Σ is notation for a dependent pair as defined in the standard library, expressing here that there is one component that is a function from \mathbb{N} to \mathbb{N} and another component whose type depends on the former function (named getlen). Clearly, both sieveVec and reverseVec can be thus embedded, for suitable choices of the getlen function. For example, the pair $(\lfloor \sqrt{2} \rfloor, \text{sieveVec})$ has the above Σ-type.

That indeed every polymorphic function on homogeneous lists can be thus embedded depends on free theorems, as given by Wadler (1989). One free theorem in Haskell is that for every function of type $[a] \to [a]$ the length of the returned list is independent of the contents of the passed list, instead only depending on its length. Correspondingly, for list-based get the correct getlen function can be constructively obtained, and then used to define the type of the vector-based variant of get. The relationship here has to do with the fact that the vector type is an ornament of the list type (Dagand and McBride 2012, 2013; Ko and Gibbons 2013). Another way of thinking about it is colored type-theory (Bernardy and Moulin 2013).

Now we are in a position to give the main construction from Voigtlander (2009). There, it is a Haskell function named bff (which is a short form of “bidirectionalization for free”) with the following type:

$$\text{bff} :: (\forall a. [a] \to [a]) \to ([a] \to [a] \to [a])$$

Apparently, a get-function is turned into a put-function, where the latter must be allowed to compare elements for equality. The most interesting bit in Agda is of course how the type plays out. It does become quite a bit more verbose, but that verbosity is useful since the additional pieces carry important information. Without further ado, here is the Agda type for bff:

$$\text{bf}f : \{ \text{getlen} : N \to N \}$$

$$\to \{ \alpha : \text{Set} \} \{ n : N \} \to \text{Vec} \alpha n$$

$$\to \{ n : N \} \to \text{Vec Carrier} n$$

$$\to \text{Vec Carrier} (\text{getlen} n)$$

$$\to \text{Maybe} (\text{Vec Carrier} n)$$

Let us discuss this type a bit. First of all note how the dependent pair from the above prototypical Agda type for get, which is to take the role of the $(\forall a. [a] \to [a])$ argument function in Haskell’s $\text{bf}f$, is turned into two arguments for bff by currying. For the produced put, instead of quantifying over an Eq-constrained type variable, we use a Carrier type that is a parameter of the Agda module in which bff is defined. That is solely done for convenience—since a client of the module can pass an arbitrary type for that parameter, as long as a decidable semantic equality is defined for that type, there is no less flexibility when applying the outcome put-function of bff than there is in Haskell.

Data.Product

For simplicity, we do not yet consider type class extensions to get.

To cut down on proof size, we do not support any other kind of equality at the moment. Allowing arbitrary equivalence relations here would be a first step towards supporting type class extensions to get. Different notions of equality equivalence also play an important role in the work of Wang and Najd (2014) on streamlining semantic bidirectionalization for get-functions that are type class aware, or indeed generally higher-order.

Another notable difference is that the final outcome is wrapped in a Maybe. The reason for this is that in Agda all functions must be total. So while the Haskell implementation fails with a runtime error if no suitable result can be produced by put, in Agda we instead need to explicitly signal error cases as special values. Finally, the vector lengths in the type of the produced put-function tell us about shape constraints. In fact, mismatches between expected shape (from the original view obtained from the original source) and actual shape (from the updated view) are one reason for runtime errors in the Haskell version of bff. In Agda, trying to combine a source s that has type $\text{Vec Carrier} n$ for some natural number n with a view v that has any other type than $\text{Vec Carrier} (\text{getlen} n)$, in particular one that has any other length than the expected $\text{getlen} n$, will not even be type-correct—so a possible runtime error has been turned into a static check.

The actual definition of bff is not much different than in Haskell. Apart from functions from the standard library it uses a few custom functions. In particular,

$$\text{enumerate} : \{ n : N \} \to \text{Vec Carrier} n \to \text{Vec} (\text{Fin} n) n$$

$$\text{enumerate} = \text{tabulate id}$$

enumerates the elements of a Vec, i.e., takes a vector of length n and produces a vector that corresponds to the list $[0, 1, \ldots, n-1]$, and

$$\text{denumeral} : \{ n : N \} \to \text{Vec Carrier} n \to \text{Fin} n \to \text{Carrier}$$

$$\text{denumeral} = \text{flip lookup}$$

reovers the actual values, given a position. Using some further auxiliary functions we do not repeat from Grohne (2013) in full here, we arrive at:

$$\text{FinMapMaybe} : N \to \text{Set} \to \text{Set}$$

$$\text{FinMapMaybe} m \alpha = \text{Vec} (\text{Maybe} \alpha) m$$

$$\text{checkInsert} : \{ m : N \} \to \text{Fin} m \to \text{Carrier}$$

$$\text{FinMapMaybe} m \text{Carrier}$$

$$\text{checkInsert} i b h \text{with lookup} i h$$

$$\ldots$$

$$\ldots$$

$$\ldots$$

$$\text{assoc : } \{ n : N \} \to \text{Vec} (\text{Fin} m) n \to \text{Vec Carrier} n$$

$$\text{Maybe} (\text{FinMapMaybe} m \text{Carrier})$$

$$\text{assoc} \{ \text{zero} \} \{ \} \{ \} = \text{just empty}$$

$$\text{assoc} \{ \text{succ} n \} \left(i :: \text{is} \right) \left(b :: \text{bs} \right) = \text{assoc is bs}$$

$$\text{bf}f \text{get s v = let s' = enumerate s g = \text{tabulate (denumeral s) } h = \text{assoc (get s') v h' = (flip union g)} <_{\text{S}} \text{h'}$$

$$\text{in (flip mapVec s' o flip lookup)} <_{\text{S}} \text{h'}$$

We do not explain all syntax used here, in particular the generalized form of pattern matching via with. Beside the

For example, $\text{flip} : \{ \alpha \beta \gamma : \text{Set} \} \to (\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma$, $\text{mapVec} : \{ \alpha \beta : \text{Set} \} \{ n : N \} \to (\alpha \to \beta) \to \text{Vec} \alpha n \to \text{Vec} \beta n$, and $\text{vec} <_{\text{S}} > : \{ \alpha : \text{Set} \} \to (\alpha \to \beta) \to \text{Maybe} \alpha \to \text{Maybe} \beta$ are similar to their Haskell counterparts.
What is interesting to record, of course, is what assumptions within said formalization itself is the Vec \(\text{Vec} \) variant of the free theorem for polymorphic functions on homogeneous lists. Instead, it is only postulated.

4. PROVING CORRECTNESS

\cite{Voigtländer2009} proves two theorems about \(\text{bff} \), corresponding to \(\text{GetPut} \) and \(\text{PutGet} \). In Agda, a theorem is represented/encoded as a type and a proof is a term that has that type. The two theorems as expressed in Agda are:

Theorem 1:
\[
\begin{align*}
& \text{getlen} : \mathbb{N} \rightarrow \mathbb{N} \\
& \rightarrow (\text{get} : \{ \alpha : \text{Set} \} \{ n : \mathbb{N} \} \rightarrow \text{Vec} \ \alpha \ n) \\
& \rightarrow (\alpha : \text{Set}) \{ n : \mathbb{N} \} \\
& \rightarrow (s : \text{Vec Carrier} \ n) \\
& \rightarrow \text{bff} \ \text{get} \ s \ (\text{get} \ s) \equiv \text{just} \ s
\end{align*}
\]

and:

Theorem 2:
\[
\begin{align*}
& \text{getlen} : \mathbb{N} \rightarrow \mathbb{N} \\
& \rightarrow (\text{get} : \{ \alpha : \text{Set} \} \{ n : \mathbb{N} \} \rightarrow \text{Vec} \ \alpha \ n) \\
& \rightarrow (\alpha : \text{Set}) \{ n : \mathbb{N} \} \\
& \rightarrow (s : \text{Vec Carrier} \ n) \\
& \rightarrow (v : \text{Vec Carrier} \ (\text{getlen} \ n)) \\
& \rightarrow (u : \text{Vec Carrier} \ n) \\
& \rightarrow \text{bff} \ \text{get} \ s \ v \equiv \text{just} \ u \\
& \rightarrow \text{get} \ u \equiv \text{v}
\end{align*}
\]

Note how both are first "quantified"—since an argument type means a piece that the user of the theorem can choose freely as long as being type-correct—over the ingredients (a getlen and a get) that are the main inputs to bff. Then, **Theorem 1** expresses that for every \(s \) and every \(\text{put} \) obtained as \(\text{bff} \ \text{get} \) holds: \(\text{put} \ s \ (\text{get} \ s) \equiv \text{just} \ s \), i.e., the here appropriate version of the \(\text{GetPut} \) law \(\text{put}(s, \text{get}(s)) = s \). Similarly, **Theorem 2** expresses that for every \(s, v, u \) if \(\text{bff} \ \text{get} \ s \ v \equiv \text{just} \ u \) (note that a precondition simply becomes a function argument whose type is a statement, and thus whose every value witness will be a proof object for that statement), then \(\text{get} \ u \equiv \text{v} \). In other words, again for \(\text{put} \) obtained as \(\text{bff} \ \text{get} \) if: there is some \(u \) such that \(\text{put} \ s \ v \equiv \text{just} \ u \), then \(\text{get} \ u \equiv \text{v} \). That of course corresponds to the \(\text{PutGet} \) law, \(\text{put}(s, \text{get}(s)) = v \), conditioned by \(\text{put}(s, v) \) actually being defined.

Complete proof objects for **Theorem 1** and **Theorem 2** are given in \cite{Grohne2013} Agda source at \url{http://subdivi.de/helmut/academia/fsbxia.agda}. We will not give those proofs/terms here; the important thing is that they exist. What is interesting to record, of course, is what assumptions they depend on. The only dependency that is not proved within said formalization itself is the Vec variant of the free theorem for polymorphic functions on homogeneous lists. Instead, it is only postulated.

Postulate

\[
\text{free-theorem} \ \text{Vec} :
\begin{align*}
& \text{getlen} : \mathbb{N} \rightarrow \mathbb{N} \\
& \rightarrow (\text{get} : \{ \alpha : \text{Set} \} \{ n : \mathbb{N} \} \rightarrow \text{Vec} \ \alpha \ n) \\
& \rightarrow (\beta : \text{Set}) \\
& \rightarrow (f : \beta \rightarrow \gamma) \\
& \rightarrow (\alpha : \text{Set}) \\
& \rightarrow \text{get} \ (\text{map} \ \text{Vec} \ f \ l) \equiv \text{map} \ \text{Vec} \ f \ (\text{get} \ l)
\end{align*}
\]

This is the natural transfer of the free theorem statement for lists from \cite{Wadler1989} to the setting of vectors. Actually proving it in Agda as well would require techniques that are orthogonal to our consideration of the lens laws \cite{Bernardy2012}, so we opt for keeping it as a postulation here, just as the list version of that free theorem for Haskell was an assumption (by all beliefs of the Haskell community a very well-founded one) in the proofs of \cite{Voigtländer2009}. The important thing is that the proofs of **Theorem 1** and **Theorem 2** from free-theorem\(\text{Vec} \) are now fully machine-checked!

Those proofs themselves proceed via a series of lemmas, similarly as one would do on paper, but of course Agda is uncompromising in requiring an explicit argument for each step. There is no "this is obvious" or "left as an exercise to the reader" as in \cite{Voigtländer2009} and other papers on semantic bidirectionalization and extensions thereof. Just to give a taste, here are statements that we encounter which correspond to Lemmas 1 and 2 of \cite{Voigtländer2009}:

Lemma 1:
\[
\begin{align*}
& \{ m, n : \mathbb{N} \} \\
& \rightarrow (i : \text{Vec} (\text{Fin} \ m) \ n) \rightarrow (f : \text{Fin} \ m \rightarrow \text{Carrier}) \\
& \rightarrow \text{assoc} \ is \ (\text{map} \ \text{Vec} \ f \ is) \equiv \text{just} \ (\text{restrict} \ f \ (\text{toList} \ is))
\end{align*}
\]

Lemma 2:
\[
\begin{align*}
& \{ m, n : \mathbb{N} \} \\
& \rightarrow (i : \text{Vec} (\text{Fin} \ m) \ n) \rightarrow (v : \text{Vec Carrier} \ n) \\
& \rightarrow (h : \text{FinMapMaybe} \ m \ \text{Carrier}) \\
& \rightarrow \text{assoc} \ is \ v \equiv \text{just} \ h \\
& \rightarrow \text{map} \ \text{Vec} \ (\text{flip} \ \text{lookup} \ h) \ is \equiv \text{map} \ \text{Vec} \ v
\end{align*}
\]

as well as how an induction proof in Agda looks like, for the former:

Lemma 1 (i :: is) f = refl
\[
\begin{align*}
& (\text{assoc} \ is \ (\text{map} \ \text{Vec} \ f \ is) \Rightarrow \text{checkInsert} \ i \ (f \ i)) \\
& \equiv \ (\text{cong} \ (\lambda \ h \rightarrow \ h) \Rightarrow \text{checkInsert} \ i \ (f \ i)) \\
& \text{begin} \\
& \text{lemma-1 is f} \ (\text{just} \ (\text{restrict} \ f \ (\text{toList} \ is))) \Rightarrow \text{checkInsert} \ i \ (f \ i) \text{ ref} \\
& \equiv \text{lemma-1 is f} \ (\text{restrict} \ f \ (\text{toList} \ is)) \\
& \text{just} \ (\text{restrict} \ f \ (\text{toList} \ is))) \text{ ref}
\end{align*}
\]

farming out to another auxiliary lemma:

Lemma-checkInsert-restrict:
\[
\begin{align*}
& \{ m : \mathbb{N} \} \\
& \rightarrow (f : \text{Fin} \ m \rightarrow \text{Carrier}) \\
& \rightarrow (i : \text{Fin} \ m) \rightarrow (\text{is} : \text{List} \ (\text{Fin} \ m)) \\
& \rightarrow \text{checkInsert} \ i \ (f \ i) \ (\text{restrict} \ f \ is) \\
& \equiv \text{just} \ (\text{restrict} \ f \ (i :: \text{is}))
\end{align*}
\]

which in turn requires further inductions, etc. Something we do not dwell on here is the actual process of arriving at the proofs, but \cite{Grohne2013} describes in detail how interactive proof construction works and how Agda lends a helping hand, while also requiring familiarization with certain idioms for effective formalization. This guidance

\footnote{The \text{refl} steps correspond to reflexivity of propositional equality \(\equiv \). It can be used when Agda is able to prove an equality by its built-in rewriting strategy based on function definitions. Such rewriting also happens silently, but of course always with Agda’s correctness guarantee, in some other steps.}
should be helpful when embarking on a similar endeavor for correctness proofs of other techniques, or when further developing the provided formalization, to cover extensions of semantic bidirectionalization already presented in the literature or still to be explored.

5. SO WHAT?

We have arrived at formal proofs of GetPut and PutGet for the bidirectionalization technique from Voigtländer (2009). But we already knew, or at least very strongly believed, that the technique was correct beforehand. After all, the original paper did contain lemmas, theorems, and proofs that seemed acceptable to the community. So what have we actually gained?

Beside the reassuring feeling that comes with a machine-checked proof, the dependent types and formalization work bring concrete additional benefits in terms of better understanding of the formalized technique and its properties. We have already remarked on the fact that the Haskell version of \texttt{bff} can fail with a runtime error, and that one reason for such failure is shape mismatches, and that the constraints on vector lengths in the Agda types we use prevent those. Actually, it was already informally observed in previous work for the Haskell version that only when the shapes of \texttt{get} and \texttt{v} are the same is there any hope that \texttt{put} \texttt{s} \texttt{v} is defined, but the dependent types in the Agda version are both explicit and more rigorous about this.

And there is more. Even when the shapes are in the correct relationship, the \texttt{put} obtained as \texttt{bff get} can fail. After all, that is why we have wrapped the ultimate return type of \texttt{bff} in a \texttt{Maybe}. Such failure occurs when \texttt{get} duplicates some entry from the source sequence and the two copies in the view are updated to different values. On the other hand, if no duplication takes place, then \texttt{bff} should not end up returning \texttt{nothing} (thus signaling failure). In Agda, we can formalize this intuition based on the following predicate:

\begin{verbatim}
data All-different {α : Set} : List α → Set where
different-[] : All-different []
different-∷ : { x : α } { xs : List α } → x \not\equiv xs → All-different xs → All-different (x :: xs)
\end{verbatim}

What this definition says is that, trivially, the elements of the empty list are pairwise different, and the elements of a non-empty list are pairwise different if the head element is not contained in the tail and if, moreover, the elements of the tail are pairwise different. Based on All-different, Grohne (2013) proves a sufficient condition for when an assoc-call succeeds (i.e., for when there exists some \texttt{h} such that the result of assoc is just \texttt{h} rather than nothing):

\begin{verbatim}
different-assoc :
{ m n : N } → (u : Vec (Fin m) n) → (v : Vec Carrier n) → All-different (toList u) → All-different (toList v) → \exists (λ h → assoc u v \equiv just h)
\end{verbatim}

Moreover, he proves that if a certain assoc-call succeeds, then the \texttt{put} obtained as \texttt{bff get} succeeds:

\begin{verbatim}
lemma-assoc-enough :
{ getlen : N → N }
\rightarrow (get : \{ α : Set \} \{ n : N \} → Vec α n
→ Vec α (getlen n))
→ \{ n : N \}
→ (s : Vec Carrier n)
→ (v : Vec Carrier (getlen n))
→ \exists (λ h → assoc (get (enumerate s)) v \equiv just h)
→ \exists (λ u → bff get s v \equiv just u)
\end{verbatim}

Combining different-assoc and lemma-assoc-enough, we learn that bff get s v succeeds, and thus the precondition of GetPut theorem-2 is fulfilled, if

All-different (toList (get (enumerate s)))

holds. Thus, we have formally established that a sufficient condition on \texttt{get} to guarantee that the dependently typed bff get always succeeds is what is called semantically affine in [Voigtländer et al., 2013].

Further exploration of semantic bidirectionalization techniques should also profit from the availability of a formalization. Indeed, such availability would have benefited us in the past. For example, the original paper (Voigtländer 2009) proved GetPut and PutGet, but only claimed that a third law, PutPut, also holds. Later work (Foster et al., 2012) refactored the definition of bff, essentially by formulating it in terms of the constant-complement approach (Bancillon and Spyratos, 1981), to make more apparent that PutPut indeed holds. But this refactoring required extra care and consideration to make sure that no other properties were destroyed. In fact, new arguments were needed for correctness of the refactored version. Of course, the same would have been the case if an Agda formalization of the original correctness arguments had already been available, but the dependent types and proof assistant would have provided a safety net, just as standard type systems provide a safety net when refactoring ordinary programs instead of programs and proofs in one go. Similarly, other and further variations of semantic bidirectionalization may profit now. It would be useful to first extend the formalization to treat data structures other than sequences for \texttt{get} to operate on, for example trees. Data type generic versions of \texttt{get} have already been implemented in Haskell [Voigtländer, 2009, Foster et al., 2012], but not been proved with the same rigor. The formalization of indexed containers using ornaments (Dagand and McBride, 2013) should be useful here.

Finally, let us mention a promising new direction for bidirectionalization that uses dependent types not only for verification but for doing a better job at the bidirectionalization task itself. The idea here is to turn dependent types into a "plug-in" in the sense of [Voigtländer et al., 2013]. In brief, the variation of semantic bidirectionalization presented by Voigtländer et al. (2013) overcomes the limitation of only being able to handle shape-preserving updates. It does so by requiring that each invocation of \texttt{bff} is enriched by a "shape bidirectionalizer", a function that performs well-behaved updates on an abstraction of sources and views to the shape level, for example list lengths. Several possibilities are discussed for solving the shape-level problem, ranging from requesting programmer input, over search and syntactic transformations, to bootstrapping semantic bidirectionalization for abstracted problems. All this happens in Haskell, but in Agda we have another resource for such plug-in techniques. Namely, we can turn to shape information that comes from the types. Specifically, the getlen functions already express relationships between source and view sequence lengths.
Since the propagation direction needed for shape bidirectionalizer plug-ins is from views to sources, we would actually need at least a partial inverse of get\(\text{len}\). But with the rich expressiveness available at the type level in Agda, we could even explore different abstractions, be they general relations between source and view shapes, or functions in one or the other direction. We can also prove connections between these abstractions, and potentially move between them, depending on what is most convenient for a given get-function. As a very simple example of what we have in mind, consider the tail function with its canonical type in Agda:

\[
\text{tail} : \{\alpha : \text{Set}\} \{n : \text{N}\} \to \text{Vec} \\alpha \text{ (suc n)} \to \text{Vec} \\alpha \ n
\]

The type does not only express that tail is only well-defined on non-empty sequences, it also tells us in no uncertain terms that its input is always exactly one entry longer than its output (so suc acts as get\(\text{len}\)^{-1} here). Concerning bidirectionality that tells us that if tail is get and the view sequence is changed to some new length, we know exactly what the new source length should be. This is exactly the information that a shape bidirectionalizer plug-in needs to provide, but now actually available statically by virtue of the very definition of get in a dependently typed language. We plan to develop a general technique from this idea, of course with Agda implementation and formalization going hand in hand.

References

Nate Foster, Kazutaka Matsuda, and Janis Voigtlander. Three complementary approaches to bidirectional programming. In *Spring School on Generic and Indexed Programming (SSGIP 2010), Revised Lectures*, volume 7470 of *Lecture Notes in Computer Science*, pages 1–46. Springer, 2012. doi [10.1007/978-3-642-32202-0_1](http://dx.doi.org/10.1007/978-3-642-32202-0_1).

