
Free Theorems Involving Type Constructor Classes
Functional Pearl

Janis Voigtländer
Institut für Theoretische Informatik

Technische Universität Dresden
01062 Dresden, Germany

janis.voigtlaender@acm.org

Abstract
Free theorems are a charm, allowing the derivation of useful state-
ments about programs from their (polymorphic) types alone. We
show how to reap such theorems not only from polymorphism over
ordinary types, but also from polymorphism over type constructors
restricted by class constraints. Our prime application area is that
of monads, which form the probably most popular type constructor
class of Haskell. To demonstrate the broader scope, we also deal
with a transparent way of introducing difference lists into a pro-
gram, endowed with a neat and general correctness proof.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Invariants; D.1.1 [Programming Techniques]: Ap-
plicative (Functional) Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

General Terms Languages, Verification

Keywords relational parametricity

1. Introduction
One of the strengths of functional languages like Haskell is an ex-
pressive type system. And yet, some of the benefits this strength
should hold for reasoning about programs seem not to be re-
alised to full extent. For example, Haskell uses monads (Moggi
1991) to structure programs by separating concerns (Wadler 1992;
Liang et al. 1995) and to safely mingle pure and impure compu-
tations (Peyton Jones and Wadler 1993; Launchbury and Peyton
Jones 1995). A lot of code can be kept independent of a concrete
choice of monad. This observation pertains to functions from the
Prelude (Haskell’s standard library) like

sequence :: Monad µ⇒ [µ α]→ µ [α] ,

but also to many user-defined functions. Such abstraction is cer-
tainly a boon for modularity of programs. But also for reasoning?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Let us consider a more specific example, say functions of the
type Monad µ⇒ [µ Int]→ µ Int. Here are some:1

f1 = head

f2 ms = sequence ms >>= return ◦ sum

f3 = f2 ◦ reverse

f4 [] = return 0
f4 (m : ms) = do i← m

let l = length ms
if i > l then return (i+ l)

else f4 (drop i ms)

As we see, there is quite a variety of such functions. There can be
simple selection of one of the monadic computations from the input
list (as in f1), there can be sequencing of these monadic computa-
tions (in any order) and some action on the encapsulated values (as
in f2 and f3), and the behaviour, in particular the choice which
of the computations from the input list are actually performed,
can even depend on the encapsulated values themselves (as in f4,
made a bit artificial here). Further possibilities are that some of the
monadic computations from the input list are performed repeatedly,
and so forth. But still, all these functions also have something in
common. They can only combine whatever monadic computations,
and associated effects, they encounter in their input lists, but they
cannot introduce new effects of any concrete monad, not even of
the one they are actually operating on in a particular application in-
stance. This limitation is determined by the function type. For if an
f were, on and of its own, to cause any additional effect to happen,
be it by writing to the output, by introducing additional branching
in the nondeterminism monad, or whatever, then it would immedi-
ately fail to get the above type parametric over µ. In a language like
Haskell, should not we be able to profit from this kind of abstrac-
tion for reasoning purposes?

If so, what kind of insights can we hope for? One thing to ex-
pect is that in the special case when the concrete computations in
an input list passed to an f :: Monad µ ⇒ [µ Int] → µ Int cor-
respond to pure values (e.g., are values of type IO Int that do not
perform any actual input or output), then the same should hold of
f ’s result for that input list. This statement is quite intuitive from
the above observation about f being unable to cause new effects on

1 The functions head , sum , reverse , length , and drop are all from the
Prelude. Their general types and explanation can be found via Hoogle
(http://haskell.org/hoogle). The notation ◦ is for function composi-
tion, while >>= and do are two different syntaxes for performing compu-
tations in a monad one after the other. Finally, return embeds pure values
into a monad.

http://haskell.org/hoogle

its own. But what about more interesting statements, for example
the preservation of certain invariants? Say we pass to f a list of
stateful computations and we happen to know that they do depend
on, but do not alter (a certain part of) the state. Is this property pre-
served throughout the evaluation of a given f? Or say the effect en-
capsulated in f ’s input list is nondeterminism but we would like to
simplify the program by restricting the computation to a determin-
istically chosen representative from each nondeterministic mani-
fold. Under what conditions, and for which kind of representative-
selection functions, is this simplification safe and does not lead to
problems like a collapse of an erstwhile nonempty manifold to an
empty one from which no representative can be chosen at all?

One could go and study these questions for particular functions
like the f1 to f4 given further above. But instead we would like to
answer them for any function of type Monad µ⇒ [µ Int]→ µ Int
in general, without consulting particular function definitions. And
we would not like to restrict to the two or three scenarios depicted
in the previous paragraph. Rather, we want to explore more abstract
settings of which statements like the ones in question above can be
seen, and dealt with, as particular instances. And, of course, we pre-
fer a generic methodology that applies equally well to other types
than the specific one of f considered so far in this introduction.
These aims are not arbitrary or far-fetched. Precedent has been set
with the theorems obtained for free by Wadler (1989) from rela-
tional parametricity (Reynolds 1983). Derivation of such free the-
orems, too, is a methodology that applies not only to a single type,
works independently of particular function definitions, and applies
to a diverse range of scenarios: from simple algebraic laws to pow-
erful program transformations (Gill et al. 1993), to meta-theorems
about whole classes of algorithms (Voigtländer 2008b), to specific
applications in software engineering and databases (Voigtländer
2009).

Unsurprisingly then, we do build on Reynolds’ and Wadler’s
work. Of course, the framework that is usually considered when
free theorems are derived needs to be extended to deal with types
like Monad µ ⇒ But the ideas needed to do so are there for
the taking. Indeed, both relational parametricity extended for poly-
morphism over type constructors rather than over ordinary types
only, as well as relational parametricity extended to take class con-
straints into account, are in the folklore. However, these two strands
of possible extension have not been combined before, and not been
used as we do. Since we are mostly interested in demonstrating
the prospects gained from that combination, we refrain here from
developing the folklore into a full-fledged formal apparatus that
would stand to blur the intuitive ideas. This is not an overly theoret-
ical paper. Also on purpose, we do not consider Haskell intricacies,
like those studied by Johann and Voigtländer (2004) and Stenger
and Voigtländer (2009), that do affect relational parametricity but
in a way orthogonal to what is of interest here. Instead, we stay with
Reynolds’ and Wadler’s simple model (but consider the extension
to general recursion in Appendix C). For the sake of accessibility,
we also stay close to Wadler’s notation.

2. Free Theorems, in Full Beauty
So what is the deal with free theorems? Why should it be possible to
derive statements about a function’s behaviour from its type alone?
Maybe it is best to start with a concrete example. Consider the type
signature

f :: [α]→ [α] .

What does it tell us about the function f? For sure that it takes
lists as input and produces lists as output. But we also see that f
is polymorphic, due to the type variable α, and so must work for
lists over arbitrary element types. How, then, can elements for the
output list come into existence? The answer is that the output list

can only ever contain elements from the input list. For the function,
not knowing the element type of the lists it operates over, cannot
possibly make up new elements of any concrete type to put into
the output, such as 42 or True, or even id , because then f would
immediately fail to have the general type [α]→ [α].2

So for any input list l (over any element type) the output list
f l consists solely of elements from l.

But how can f decide which elements from l to propagate to the
output list, and in which order and multiplicity? The answer is that
such decisions can only be made based on the input list l. For in a
pure functional language f has no access to any global state or other
context based on which to decide. It cannot, for example, consult
the user in any way about what to do. And the means by which
to make decisions based on l are limited as well. In particular,
decisions cannot possibly depend on any specifics of the elements
of l. For the function is ignorant of the element type, and so is
prevented from analysing list elements in any way (be it by pattern-
matching, comparison operations, or whatever). In fact, the only
means for f to drive its decision-making is to inspect the length of l,
because that is the only element-independent “information content”
of a list.

So for any pair of lists l and l′ of same length (but possibly
over different element types) the lists f l and f l′ are formed
by making the same position-wise selections of elements
from l and l′, respectively.

Now consider the following standard Haskell function:

map :: (α→ β)→ [α]→ [β]
map g [] = []
map g (a : as) = (g a) : (map g as)

Clearly, map g for any g preserves the lengths of lists. So if
l′ = map g l, then f l and f l′ are of the same length and con-
tain, at each position, position-wise exactly corresponding elements
from l and l′, respectively. Since, moreover, any two position-wise
corresponding elements, one from l and one from l′ = map g l,
are related by the latter being the g-image of the former, we have
that at each position f l′ contains the g-image of the element at the
same position in f l.

So for any list l and (type-appropriate) function g, we have
f (map g l) = map g (f l).

Note that during the reasoning leading up to that statement we
did not (need to) consider the actual definition of f at all. The
methodology of deriving free theorems à la Wadler (1989) is a way
to obtain statements of this flavour for arbitrary function types, and
in a more disciplined (and provably sound) manner than the mere
handwaving performed above.

The key to doing so is to interpret types as relations. For exam-
ple, given the type signature f :: [α] → [α], we take the type and
replace every quantification over type variables, including implicit
quantification (note that the type [α]→ [α], by Haskell convention,
really means ∀α. [α] → [α]), by quantification over relation vari-
ables: ∀R. [R] → [R]. Then, there is a systematic way of reading
such expressions over relations as relations themselves. In particu-
lar,

• base types like Int are read as identity relations,
• for relationsR and S, we have

R→ S = {(f, g) | ∀(a, b) ∈ R. (f a, g b) ∈ S} ,

and

2 The situation is more complicated in the presence of general recursion.
For further discussion, see Appendix C.

• for types τ and τ ′ with at most one free variable, say α, and
a function F on relations such that every relation R between
closed types τ1 and τ2, denoted R : τ1 ⇔ τ2, is mapped to a
relation F R : τ [τ1/α]⇔ τ ′[τ2/α], we have

∀R.F R = {(u, v) | ∀τ1, τ2,R : τ1 ⇔ τ2. (uτ1 , vτ2) ∈ F R}
(Here, uτ1 :: τ [τ1/α] is the instantiation of u :: ∀α. τ to the
type τ1, and similarly for vτ2 . In what follows, we will always
leave type instantiation implicit.)

Also, every fixed type constructor is read as an appropriate con-
struction on relations. For example, the list type constructor maps
every relationR : τ1 ⇔ τ2 to the relation [R] : [τ1]⇔ [τ2] defined
by (the least fixpoint of)

[R] = {([], [])}∪{(a : as, b : bs) | (a, b) ∈ R, (as, bs) ∈ [R]} ,
the Maybe type constructor maps every relation R : τ1 ⇔ τ2 to
the relation MaybeR : Maybe τ1 ⇔ Maybe τ2 defined by

MaybeR = {(Nothing,Nothing)} ∪
{(Just a, Just b) | (a, b) ∈ R} ,

and similarly for other user-definable types.
The key insight of relational parametricity à la Reynolds (1983)

now is that any expression over relations that can be built as above,
by interpreting a closed type, denotes the identity relation on that
type.

For the above example, this insight means that any f ::
∀α. [α] → [α] satisfies (f, f) ∈ ∀R. [R] → [R], which by
unfolding some of the above definitions is equivalent to having for
every τ1, τ2, R : τ1 ⇔ τ2, l :: [τ1], and l′ :: [τ2] that (l, l′) ∈ [R]
implies (f l, f l′) ∈ [R], or, specialised to the function level
(R 7→ g, and thus [R] 7→ map g), for every g :: τ1 → τ2
and l :: [τ1] that f (map g l) = map g (f l). This proof fi-
nally provides the formal counterpart to the intuitive reasoning
earlier in this section. And the development is algorithmic enough
that it can be performed automatically. Indeed, an online free the-
orems generator (Böhme 2007) is accessible at our homepage
(http://linux.tcs.inf.tu-dresden.de/~voigt/ft/).

3. The Extension to Type Constructor Classes
We now want to deal with two new aspects: with quantification over
type constructor variables (rather than just over type variables) and
with class constraints (Wadler and Blott 1989). For both aspects,
the required extensions to the interpretation of types as relations
appear to be folklore, but have seldom been spelled out and have
not been put to use before as we do in this paper.

Regarding quantification over type constructor variables, the
necessary adaptation is as follows. Just as free type variables are in-
terpreted as relations between arbitrarily chosen closed types (and
then quantified over via relation variables), free type constructor
variables are interpreted as functions on such relations tied to ar-
bitrarily chosen type constructors. Formally, let κ1 and κ2 be type
constructors (of kind ∗ → ∗). A relational action for them, denoted
F : κ1 ⇔ κ2, is a function F on relations between closed types
such that everyR : τ1 ⇔ τ2 (for arbitrary τ1 and τ2) is mapped to
an F R : κ1 τ1 ⇔ κ2 τ2. For example, the function F that maps
everyR : τ1 ⇔ τ2 to

F R = {(Nothing, [])} ∪
{(Just a, b : bs) | (a, b) ∈ R, bs :: [τ2]}

is a relational action F : Maybe ⇔ []. The relational interpreta-
tion of a type quantifying over a type constructor variable is now
performed in an analogous way as explained for quantification over
type (and then, relation) variables above. In different formulations
and detail, the same basic idea is mentioned or used by Fegaras and

Sheard (1996), Kučan (1997), Takeuti (2001), and Vytiniotis and
Weirich (2009).

Regarding class constraints, Wadler (1989, Section 3.4) directs
the way by explaining how to treat the type class Eq in the context
of deriving free theorems. The idea is to simply restrict the relations
chosen as interpretation for type variables that are subject to a class
constraint. Clearly, only relations between types that are instances
of the class under consideration are allowed. Further restrictions
are obtained from the respective class declaration. Namely, the
restrictions must precisely ensure that every class method (seen as
a new constant in the language) is related to itself by the relational
interpretation of its type. This relatedness then guarantees that the
overall result (i.e., that the relational interpretation of every closed
type is an identity relation) stays intact (Mitchell and Meyer 1985).
The same approach immediately applies to type constructor classes
as well. Consider, for example, the Monad class declaration:

class Monad µwhere
return :: α→ µ α
(>>=) :: µ α→ (α→ µ β)→ µ β

Since the type of return is ∀µ. Monad µ ⇒ (∀α. α → µ α),
we expect that (return, return) ∈ ∀F . Monad F ⇒ (∀R. R →
F R), and similarly for >>=. The constraint “Monad F” on a
relational action is now defined in precisely such a way that both
conditions will be fulfilled.

Definition 1. Let κ1 and κ2 be type constructors that are instances
of Monad and let F : κ1 ⇔ κ2 be a relational action. If

• (returnκ1 , returnκ2) ∈ ∀R.R→ F R and
• ((>>=κ1), (>>=κ2)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S),

then F is called a Monad-action.3 (While we have decided to gen-
erally leave type instantiation implicit, we explicitly retain instan-
tiation of type constructors in what follows, except for some exam-
ples.)

For example, given the following standard Monad instance defini-
tions:

instance Monad Maybe where
return a = Just a
Nothing >>= k = Nothing
Just a >>= k = k a

instance Monad [] where
return a = [a]
as >>= k = concat (map k as)

the relational action F : Maybe⇔ [] given above is not a Monad-
action, because it is not the case that ((>>=Maybe), (>>=[])) ∈
∀R. ∀S. F R → ((R→ F S)→ F S). To see this, consider

R = S = id Int ,
m1 = Just 1 ,
m2 = [1, 2] ,
k1 = λi→ if i > 1 then Just i else Nothing , and
k2 = λi→ reverse [2..i] .

Clearly, (m1,m2) ∈ F id Int and (k1, k2) ∈ id Int → F id Int, but
(m1 >>=Maybe k1,m2 >>=[] k2) = (Nothing, [2]) /∈ F id Int. On
the other hand, the relational action F ′ : Maybe⇔ [] with

F ′ R = {(Nothing, [])} ∪ {(Just a, [b]) | (a, b) ∈ R}

is a Monad-action.

3 It is worth noting that “dictionary translation” (Wadler and Blott 1989)
would be an alternative way of motivating this definition.

http://linux.tcs.inf.tu-dresden.de/~voigt/ft/

We are now ready to derive free theorems involving (poly-
morphism over) type constructor classes. For example, functions
f :: Monad µ ⇒ [µ Int] → µ Int as considered in the introduc-
tion will necessarily always satisfy (f, f) ∈ ∀F . Monad F ⇒
[F id Int] → F id Int, i.e., for every choice of type constructors
κ1 and κ2 that are instances of Monad, and every Monad-action
F : κ1 ⇔ κ2, we have (fκ1 , fκ2) ∈ [F id Int] → F id Int. In the
next section we prove several theorems by instantiating the F here,
and provide plenty of examples of interesting results obtained for
concrete monads.

An important role will be played by a notion connecting differ-
ent Monad instances on a functional, rather than relational, level.

Definition 2. Let κ1 and κ2 be instances of Monad and let h ::
κ1 α→ κ2 α. If

• h ◦ returnκ1 = returnκ2 and
• for every choice of closed types τ and τ ′, m :: κ1 τ , and
k :: τ → κ1 τ

′,

h (m >>=κ1 k) = h m >>=κ2 h ◦ k ,

then h is called a Monad-morphism.

The two notions of Monad-action and Monad-morphism are
strongly related, in that Monad-actions are closed under point-
wise composition with Monad-morphisms or the inverses thereof,
depending on whether the composition is from the left or from the
right (Filinski and Støvring 2007, Proposition 3.7(2)).

4. One Application Field: Reasoning about
Monadic Programs

For most of this section, we focus on functions f :: Monad µ ⇒
[µ Int] → µ Int. However, it should be emphasised that results
of the same spirit can be systematically obtained for other func-
tion types involving quantification over Monad-restricted type con-
structor variables just as well. And note that the presence of the
concrete type Int in the function signature makes any results we ob-
tain for such f more, rather than less, interesting. For clearly there
are strictly, and considerably, fewer functions of type Monad µ⇒
[µ α]→ µ α than there are of type Monad µ⇒ [µ Int]→ µ Int 4,
so proving a statement for all functions of the latter type demon-
strates much more power than proving the same statement for all
functions of the former type only. In other words, telling f what
type of values are encapsulated in its monadic inputs and output
entails more possible behaviours of f that our reasoning principle
has to keep under control.

Also, it is not the case that using Int in most examples in this
section means that we might as well have monomorphised the
monad interface as follows:

class IntMonad µwhere
return :: Int→ µ
(>>=) :: µ→ (Int→ µ)→ µ

and thus are actually just proving results about a less interesting
type IntMonad µ ⇒ [µ] → µ without any higher-orderedness
(viz., quantifying only over a type variable rather than over a type
constructor variable). This impression would be a misconception,
as we do indeed prove results for functions critically depending
on the use of higher-order polymorphism. That the type under
consideration is Monad µ ⇒ [µ Int] → µ Int does by no way
mean that monadic encapsulation is restricted to only integer values

4 After all, any function (definition) of the type polymorphic over α can also
be given the more specific type, whereas of the functions f1 to f4 given in
the introduction as examples for functions of the latter type only f1 can be
given the former type as well.

inside functions of that type. Just consider the function f2 from the
introduction. During that function’s computation, the monadic bind
operation (>>=) is used to combine a µ-encapsulated integer list
(viz., sequence ms :: µ [Int]) with a function to a µ-encapsulated
single integer (viz., return ◦ sum :: [Int] → µ Int). Clearly, the
same or similarly modular code could not have been written at
type f2 :: IntMonad µ ⇒ [µ] → µ, because there is no way
to provide a function like sequence for the IntMonad class (or
any single monomorphised class), not even when we are content
with making sequence less flexible by fixing the α in its current
type to be Int. So again, proving results about all functions of type
f :: Monad µ ⇒ [µ Int] → µ Int covers more ground than might
at first appear to be the case.

Having rationalised our choice of example function type, let us
now get some actual work done. As a final preparation, we need to
mention three laws that Monad instances κ are often expected to
satisfy:5

returnκ a >>=κ k = k a (1)
m >>=κ returnκ = m (2)

(m >>=κ k) >>=κ q = m >>=κ (λa→ k a >>=κ q) (3)

Since Haskell does not enforce these laws, and it is easy to define
Monad instances violating them, we will explicitly keep track of
where the laws are required in our statements and proofs.

4.1 Purity Preservation
As mentioned in the introduction, one first intuitive statement we
naturally expect to hold of any f :: Monad µ ⇒ [µ Int] → µ Int
is that when all the monadic values supplied to f in the input list
are actually pure (not associated with any proper monadic effect),
then f ’s result value, though of some monadic type, should also be
pure. After all, f itself, being polymorphic over µ, cannot introduce
effects from any specific monad. This statement is expected to hold
no matter what monad the input values live in. For example, if
the input list consists of computations in the list monad, defined
in the previous section and modelling nondeterminism, but all
the concretely passed values actually correspond to deterministic
computations, then we expect that f ’s result value also corresponds
to a deterministic computation. Similarly, if the input list consists
of IO computations, but we only pass ones that happen to have no
side-effect at all, then f ’s result, though living in the IO monad,
should also be side-effect-free. To capture the notion of “purity”
independently of any concrete monad, we use the convention that
the pure computations in any monad are those that may be the result
of a call to return . Note that this does not mean that the values in
the input list must syntactically be return-calls. Rather, each of
them only needs to be semantically equivalent to some such call.
The desired statement is now formalised as follows. It is proved in
Appendix A, and is a corollary of Theorem 3 (to be given later).

Theorem 1. Let f :: Monad µ ⇒ [µ Int] → µ Int, let κ be
an instance of Monad satisfying law (1), and let l :: [κ Int].
If every element in l is a returnκ-image, then so is fκ l.

We can now reason for specific monads as follows.

Example 1. Let l :: [[Int]], i.e., l :: [κ Int] for κ = []. We
might be interested in establishing that when every element

5 Indeed, only a Monad instance satisfying these laws constitutes a
“monad” in the mathematical sense of the word.

in l is (evaluated to) a singleton list, then the result of applying
any f :: Monad µ⇒ [µ Int]→ µ Int to l will be a singleton
list as well. While this propagation is easy to see for f1, f2,
and f3 from the introduction, it is maybe not so immediately
obvious for the f4 given there. However, Theorem 1 tells us
without any further effort that the statement in question does
indeed hold for f4, and for any other f of the same type.

Likewise, we obtain the statement about side-effect-free computa-
tions in the IO monad envisaged above. All we rely on then is that
the IO monad, like the list monad, satisfies monad law (1).

4.2 Safe Value Extraction
A second general statement we are interested in is to deal with
the case that the monadic computations provided as input are not
necessarily pure, but we have a way of discarding the monadic
layer and recovering underlying values. Somewhat in the spirit of
unsafePerformIO :: IO α → α, but for other monads and hope-
fully safe. Then, if we are interested only in a thus projected result
value of f , can we show that it only depends on likewise projected
input values, i.e., that we can discard any effects from the monadic
computations in f ’s input list when we are not interested in the
effectful part of the output computation? Clearly, it would be too
much to expect this reduction to work for arbitrary “projections”,
or even arbitrary monads. Rather, we need to devise appropriate re-
strictions and prove that they suffice. The formal statement is as fol-
lows.

Theorem 2. Let f :: Monad µ ⇒ [µ Int] → µ Int, let κ be
an instance of Monad, and let p :: κ α→ α. If

• p ◦ returnκ = id and
• for every choice of closed types τ and τ ′, m :: κ τ , and
k :: τ → κ τ ′,

p (m >>=κ k) = p (k (p m)) ,

then p ◦ fκ gives the same result for any two lists of
same length whose corresponding elements have the same p-
images, i.e., p ◦ fκ can be “factored” as g ◦ (map p) for
some suitable g :: [Int]→ Int.6

The theorem is proved in Appendix B. Also, it is a corollary of
Theorem 4. Note that no monad laws at all are needed in Theorem 2
and its proof. The same will be true for the other theorems we
are going to provide, except for Theorem 5. But first, we consider
several example applications of Theorem 2.

Example 2. Consider the well-known writer, or logging,
monad (specialised here to the String monoid):

newtype Writer α = Writer (α,String)

instance Monad Writer where
return a = Writer (a, “”)
Writer (a, s) >>= k =

Writer (case k a of Writer (a′, s′)→ (a′, s ++ s′))

6 In fact, this g is explicitly given as follows: unId ◦ fId ◦ (map Id), using
the type constructor Id and its Monad instance definition from Appendix A.

Assume we are interested in applying an f :: Monad µ ⇒
[µ Int] → µ Int to an l :: [Writer Int], yielding a monadic
result of type Writer Int. Assume further that for some partic-
ular purpose during reasoning about the overall program, we
are only interested in the actual integer value encapsulated in
that result, as extracted by the following function:

p :: Writer α→ α
p (Writer (a, s)) = a

Intuition suggests that then the value of p (f l) should not
depend on any logging activity of elements in l. That is, if l
were replaced by another l′ :: [Writer Int] encapsulating the
same integer values, but potentially attached with different
logging information, then p (f l′) should give exactly the
same value. Since the given p fulfils the required conditions,
Theorem 2 confirms this intuition.

It should also be instructive here to consider a negative example.

Example 3. Recall the list monad defined in Section 3. It is
tempting to use head :: [α] → α as an extraction function
and expect that for every f :: Monad µ ⇒ [µ Int] → µ Int,
we can factor head ◦ f as g ◦ (map head) for some suitable
g :: [Int]→ Int. But actually this factorisation fails in a subtle
way. Consider, for example, the (for the sake of simplicity,
artificial) function

f5 :: Monad µ⇒ [µ Int]→ µ Int
f5 [] = return 0
f5 (m : ms) = do i← m

f5 (if i > 0 then ms else tail ms)

Then for l = [[1], []] and l′ = [[1, 0], []], both of type [[Int]],
we have map head l = map head l′, but head (f5 l) 6=
head (f5 l

′). In fact, the left-hand side of this inequation
leads to an “head of empty list”-error, whereas the right-
hand side delivers the value 0. Clearly, this means that the
supposed g cannot exist for f5 and head . An explanation for
the observed failure is provided by the conditions imposed on
p in Theorem 2. It is simply not true that for every m and k,
head (m >>= k) = head (k (head m)). More concretely,
the failure for f5 observed above arises from this equation
being violated for m = [1, 0] and k = λi → if i >
0 then [] else [0].

Since the previous (counter-)example is a bit peculiar in its reliance
on runtime errors, let us consider a related setting without empty
lists, an example also serving to further emphasise the predictive
power of the conditions on p in Theorem 2.

Example 4. Assume, just for the scope of this example, that
the type constructor [] yields (the types of) nonempty lists
only. Clearly, it becomes an instance of Monad by just the
same definition as given in Section 3. There are now several
choices for a never failing extraction function p :: [α] → α.
For example, p could be head , could be last , or could be
the function that always returns the element in the middle
position of its input list (and, say, the left one of the two
middle elements in the case of a list of even length). But which
of these candidates are “good” in the sense of providing, for

every f :: Monad µ ⇒ [µ Int] → µ Int, a factorisation of
p ◦ f into g ◦ (map p) ?

The answer is provided by the two conditions on p in
Theorem 2, which specialised to the (nonempty) list monad
require that

• for every a, p [a] = a, and
• for every choice of closed types τ and τ ′, m :: [τ], and
k :: τ → [τ ′], p (concat (map k m)) = p (k (p m)).

From these conditions it is easy to see that now p = head
is good (in contrast to the situation in Example 3), and so is
p = last , while the proposed “middle extractor” is not. It
does not fulfil the second condition above, roughly because
k does not necessarily map all its inputs to equally long
lists. (A concrete counterexample f6, of appropriate type, can
easily be produced from this observation.)

4.3 Monad Subspacing
Next, we would like to tackle reasoning not about the complete
absence of (à la Theorem 1), or disregard for (à la Theorem 2),
monadic effects, but about finer nuances. Often, we know cer-
tain computations to realise only some of the potential effects to
which they would be entitled according to the monad they live
in. If, for example, the effect under consideration is nondetermin-
ism à la the standard list monad, then we might know of some
computations in that monad that they realise only none-or-one-
nondeterminism, i.e., never produce more than one answer, but may
produce none at all. Or we might know that they realise only non-
failing-nondeterminism, i.e., always produce at least one answer,
but may produce more than one. Then, we might want to argue that
the respective nature of nondeterminism is preserved when com-
bining such computations using, say, a function f :: Monad µ ⇒
[µ Int] → µ Int. This preservation would mean that applying any
such f to any list of empty-or-singleton lists always gives an empty-
or-singleton list as result, and that applying any such f to any list
of nonempty lists only gives a nonempty list as result for sure. Or,
in the case of an exception monad (Either String), we might want
to establish that an application of f cannot possibly lead to any ex-
ceptional value (error description string) other than those already
present somewhere in its input list. Such “invariants” can often be
captured by identifying a certain “subspace” of the monadic type
in question that forms itself a monad, or, indeed, by “embedding”
another, “smaller”, monad into the one of interest. Formal counter-
parts of the intuition behind the previous sentence and the vague
phrases occurring therein can be found in Definition 2 and the fol-
lowing theorem, as well as in the subsequent examples.

Theorem 3. Let f :: Monad µ ⇒ [µ Int] → µ Int, let
h :: κ1 α→ κ2 α be a Monad-morphism, and let l :: [κ2 Int].
If every element in l is an h-image, then so is fκ2 l.

Proof. We prove that for every l′ :: [κ1 Int],

fκ2 (map h l′) = h (fκ1 l
′) . (4)

To do so, we first show that F : κ2 ⇔ κ1 with

F R = (κ2 R) ; h−1 ,

where “;” is (forward) relation composition and “−1” gives the
inverse of a function graph, is a Monad-action. Indeed,

• (returnκ2 , returnκ1) ∈ ∀R. R → F R, since for ev-
ery R and (a, b) ∈ R, (returnκ2 a, h (returnκ1 b)) =
(returnκ2 a, returnκ2 b) ∈ κ2 R by (returnκ2 , returnκ2) ∈
∀R. R → κ2 R (which holds due to returnκ2 :: ∀α. α →
κ2 α), and
• ((>>=κ2), (>>=κ1)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S), since for every R, S, (m1,m2) ∈ (κ2 R) ; h−1, and
(k1, k2) ∈ R → ((κ2 S) ; h−1),

(m1 >>=κ2 k1, h (m2 >>=κ1 k2)) =
(m1 >>=κ2 k1, h m2 >>=κ2 h ◦ k2) ∈ κ2 S

by ((>>=κ2), (>>=κ2)) ∈ ∀R. ∀S. κ2 R → ((R →
κ2 S) → κ2 S), (m1, h m2) ∈ κ2 R, and (k1, h ◦ k2) ∈
R → κ2 S.

Hence, (fκ2 , fκ1) ∈ [F id Int] → F id Int. Given that we have
F id Int = (κ2 id Int) ; h−1 = h−1, this implies the claim. (Note
that κ2 id Int is the relational interpretation of the closed type κ2 Int,
and thus itself denotes idκ2 Int.)

Using Theorem 3, we can indeed prove the statements mentioned
for the list and exception monads above. Here, for diversion, we
instead prove some results about more stateful computations.

Example 5. Consider the well-known reader monad:

newtype Reader ρ α = Reader (ρ→ α)

instance Monad (Reader ρ) where
return a = Reader (λr → a)
Reader g >>= k =

Reader (λr → case k (g r) of Reader g′ → g′ r)

Assume we are given a list of computations in a Reader
monad, but it happens that all present computations depend
only on a certain part of the environment type. For example,
for some closed types τ1 and τ2, l :: [Reader (τ1, τ2) Int], and
for every element Reader g in l, g (x, y) never depends on y.
We come to expect that the same kind of independence should
then hold for the result of applying any f :: Monad µ ⇒
[µ Int] → µ Int to l. And indeed it does hold by Theorem 3
with the following Monad-morphism:

h :: Reader τ1 α→ Reader (τ1, τ2) α
h (Reader g) = Reader (g ◦ fst)

It is also possible to connect more different monads, even involving
the IO monad.

Example 6. Let l :: [IO Int] and assume that the only side-
effects that elements in l have consist of writing strings to the
output. We would like to use Theorem 3 to argue that the same
is then true for the result of applying any f :: Monad µ ⇒
[µ Int] → µ Int to l. To this end, we need to somehow
capture the concept of “writing (potentially empty) strings to
the output as only side-effect of an IO computation” via an
embedding from another monad. Quite naturally, we reuse the
Writer monad from Example 2. The embedding function is as
follows:

h :: Writer α→ IO α
h (Writer (a, s)) = putStr s >> return a

What is left to do is to show that h is a Monad-morphism.
But this property follows from putStr “” = return (),

putStr (s ++ s′) = putStr s >> putStr s′, and monad
laws (1) and (3) for the IO monad.

Similarly to the above, it would also be possible to show that when
the IO computations in l do only read from the input (via, possibly
repeated, calls to getChar), then the same is true of f l. Instead of
exercising this through, we turn to general state transformers.

Example 7. Consider the well-known state monad:

newtype State σ α = State (σ → (α, σ))

instance Monad (State σ) where
return a = State (λs→ (a, s))
State g >>= k =

State (λs→ let (a, s′) = g s in
case k a of State g′ → g′ s′)

Intuitively, this monad extends the reader monad by not only
allowing a computation to depend on an input state, but also to
transform the state to be passed to a subsequent computation.
A natural question now is whether being a specific state trans-
former that actually corresponds to a read-only computation
is an invariant that is preserved when computations are com-
bined. That is, given some closed type τ and l :: [State τ Int]
such that for every element State g in l, snd ◦ g = id , is it
the case that for every f :: Monad µ⇒ [µ Int]→ µ Int, also
f l is of the form State g for some g with snd ◦ g = id ?

The positive answer is provided by Theorem 3 with the
following Monad-morphism:

h :: Reader τ α→ State τ α
h (Reader g) = State (λs→ (g s, s))

Similarly to the above, we can show preservation of the invariant
that a computation transforms the state “in the background”, while
the primary result value is independent of the input state. That
is, if for every element State g in l, there exists an i :: Int
with fst ◦ g = const i, then the same applies to f l. It should
also be possible to transfer the above kind of reasoning to the ST
monad (Launchbury and Peyton Jones 1995).

4.4 Effect Abstraction
As a final statement about our pet type, Monad µ ⇒ [µ Int] →
µ Int, we would like to show that we can abstract from some aspects
of the effectful computations in the input list if we are interested
in the effects of the final result only up to the same abstraction.
For conveying between the full effect space and its abstraction, we
again use Monad-morphisms.

Theorem 4. Let f :: Monad µ ⇒ [µ Int] → µ Int and let
h :: κ1 α → κ2 α be a Monad-morphism. Then h ◦ fκ1

gives the same result for any two lists of same length whose
corresponding elements have the same h-images.

Proof. Let l1, l2 :: [κ1 Int] be such that map h l1 = map h l2.
Then h (fκ1 l1) = h (fκ1 l2) by statement (4) from the proof of
Theorem 3.

Example 8. Consider the well-known exception monad:

instance Monad (Either String) where
return a = Right a
Left err >>= k = Left err
Right a >>= k = k a

We would like to argue that if we are only interested in
whether the result of f for some input list over the type
Either String Int is an exceptional value or not (and which
ordinary value is encapsulated in the latter case), but do not
care what the concrete error description string is in the for-
mer case, then the answer is independent of the concrete error
description strings potentially appearing in the input list. For-
mally, let l1, l2 :: [Either String Int] be of same length, and
let corresponding elements either be both tagged with Left
(but not necessarily containing the same strings) or be iden-
tical Right-tagged values. Then for every f :: Monad µ ⇒
[µ Int]→ µ Int, f l1 and f l2 either are both tagged with Left
or are identical Right-tagged values. This statement holds by
Theorem 4 with the following Monad-morphism:

h :: Either String α→ Maybe α
h (Left err) = Nothing
h (Right a) = Just a

4.5 A More Polymorphic Example
Just to reinforce that our approach is not specific to our pet type
alone, we end this section by giving a theorem obtained for another
type, the one of sequence from the introduction, also showing
that mixed quantification over both type constructor variables and
ordinary type variables can very well be handled. The theorem’s
statement involves the following function:

fmap :: Monad µ⇒ (α→ β)→ µ α→ µ β
fmap g m = m >>= return ◦ g

Theorem 5. Let f :: Monad µ ⇒ [µ α] → µ [α] and let
h :: κ1 α → κ2 α be a Monad-morphism. If κ2 satisfies
law (2), then for every choice of closed types τ1 and τ2 and
g :: τ1 → τ2,

fκ2 ◦ map (fmapκ2
g) ◦ map h

=
fmapκ2

(map g) ◦ h ◦ fκ1 .7

Intuitively, this theorem means that any f of type Monad µ ⇒
[µ α]→ µ [α] commutes with, both, transformations on the monad
structure and transformations on the element level. The occurrences
of map and fmap are solely there to bring those transformations h
and g into the proper positions with respect to the different nestings
of the type constructors µ and [] on the input and output sides of f .
Note that by setting either g or h to id , we obtain the specialised
versions

fκ2 ◦ map h = h ◦ fκ1

7 For the curious reader: the proof derives this statement from (fκ2 , fκ1) ∈
[F g−1]→ F [g−1] for the same Monad-action F : κ2 ⇔ κ1 as used in
the proof of Theorem 3.

and
fκ ◦ map (fmapκ g) = fmapκ (map g) ◦ fκ . (5)

Further specialising the latter by choosing the identity monad for κ,
we would also essentially recover the free theorem derived for
f :: [α]→ [α] in Section 2.

5. Another Application: Difference Lists,
Transparently

It is a well-known problem that computations over lists sometimes
suffer from a quadratic runtime blow-up due to left-associatively
nested appends. For example, this is so for flattening a tree of type

data Tree α = Leaf α | Node (Tree α) (Tree α)

using the following function:

flatten :: Tree α→ [α]
flatten (Leaf a) = [a]
flatten (Node t1 t2) = flatten t1 ++ flatten t2

An equally well-known solution is to switch to an alternative rep-
resentation of lists as functions, by abstraction over the list end,
often called difference lists. In the formulation of Hughes (1986),
but encapsulated as an explicitly new data type:

newtype DList α = DL {unDL :: [α]→ [α]}

rep :: [α]→ DList α
rep l = DL (l ++)

abs :: DList α→ [α]
abs (DL f) = f []

emptyR :: DList α
emptyR = DL id

consR :: α→ DList α→ DList α
consR a (DL f) = DL ((a :) ◦ f)

appendR :: DList α→ DList α→ DList α
appendR (DL f) (DL g) = DL (f ◦ g)

Then, flattening a tree into a list in the new representation can be
done using the following function:

flatten ′ :: Tree α→ DList α
flatten ′ (Leaf a) = consR a emptyR
flatten ′ (Node t1 t2) = appendR (flatten ′ t1) (flatten ′ t2)

and a more efficient variant of the original function, with its original
type, can be recovered as follows:

flatten :: Tree α→ [α]
flatten = abs ◦ flatten ′

There are two problems with this approach. One is correctness.
How do we know that the new flatten is equivalent to the original
one? We could try to argue by “distributing” abs over the definition
of flatten ′, using abs emptyR = [], abs (consR a as) =
a : abs as , and

abs (appendR as bs) = abs as ++ abs bs . (6)

But actually the last equation does not hold in general. The rea-
son is that there are as :: DList τ that are not in the image of
rep. Consider, for example, as = DL reverse . Then neither is
as = rep l for any l, nor does (6) hold for every bs . Any argu-
ment “by distributing abs” would thus have to rely on the implicit
assumption that a certain discipline has been exercised when going
from the original flatten to flatten ′ by replacing [], (:), and (++)

by emptyR, consR, and appendR (and/or applying rep to explicit
lists). But this implicit assumption is not immediately in reach for
formal grasp. So it would be nice to be able to provide a single,
conclusive correctness statement for transformations like the one
above. One way to do so was presented by Voigtländer (2002), but
it requires a certain restructuring of code that can hamper composi-
tionality and flexibility by introducing abstraction at fixed program
points (via lambda-abstraction and so-called vanish-combinators).
This also brings us to the second problem with the simple approach
above.

When, and how, should we switch between the original and the
alternative representations of lists during program construction? If
we first write the original version of flatten and only later, after
observing a quadratic runtime overhead, switch manually to the
flatten ′-version, then this rewriting is quite cumbersome, in par-
ticular when it has to be done repeatedly for different functions.
Of course, we could decide to always use emptyR, consR, and
appendR from the beginning, to be on the safe side. But actually
this strategy is not so safe, efficiency-wise, because the representa-
tion of lists by functions carries its own (constant-factor) overhead.
If a function does not use appends in a harmful way, then we do
not want to pay this price. Hence, using the alternative presentation
in a particular situation should be a conscious decision, not a de-
fault. And assume that later on we change the behaviour of flatten ,
say, to explore only a single path through the input tree, so that no
appends at all arise. Certainly, we do not want to have to go and
manually switch back to the, now sufficient, original list represen-
tation.

The cure to our woes here is almost obvious, and has often been
applied in similar situations: simply use overloading. Specifically,
we can declare a type constructor class as follows:

class ListLike δ where
empty :: δ α
cons :: α→ δ α→ δ α
append :: δ α→ δ α→ δ α

and code flatten in the following form:

flatten :: Tree α→ (∀δ. ListLike δ ⇒ δ α)
flatten (Leaf a) = cons a empty
flatten (Node t1 t2) = append (flatten t1) (flatten t2)

Then, with the obvious instance definitions
instance ListLike [] where

empty = []
cons = (:)
append = (++)

and
instance ListLike DList where

empty = emptyR
cons = consR
append = appendR

we can use the single version of flatten above both to produce
ordinary lists and to produce difference lists. The choice between
the two will be made automatically by the type checker, depending
on the context in which a call to flatten occurs. For example, in

last (flatten t) (7)

the ordinary list representation will be used, due to the input type
of last . Actually, (7) will compile (under GHC, at least) to ex-
actly the same code as last (flatten t) for the original definition
of flatten from the very beginning of this section. Any overhead
related to the type class abstraction is simply eliminated by a stan-
dard optimisation. In particular, this means that where the original
representation of lists would have perfectly sufficed, programming
against the abstract interface provided by the ListLike class does

no harm either. On the other hand, (7) of course still suffers from
the same quadratic runtime blow-up as with the original definition
of flatten . But now we can switch to the better behaved difference
list representation without touching the code of flatten at all, by
simply using

last (abs (flatten t)) . (8)
Here the (input) type of abs determines flatten to use emptyR,
consR, and appendR, leading to linear runtime.

Can we now also answer the correctness question more satis-
factorily? Given the forms of (7) and (8), it is tempting to simply
conjecture that abs t = t for any t. But this conjecture cannot be
quite right, as abs has different input and output types. Also, we
have already observed that some t of abs’s input type are prob-
lematic by not corresponding to any actual list. The coup now is to
only consider t that only use the ListLike interface, rather than any
specific operations related to DList as such. That is, we will indeed
prove that for every closed type τ and t :: ListLike δ ⇒ δ τ ,

abs tDList = t[] .

Since the polymorphism over δ in the type of t is so important, we
follow Voigtländer (2008a) and make it an explicit requirement in
a function that we will use instead of abs for switching from the
original to the alternative representation of lists:

improve :: (∀δ. ListLike δ ⇒ δ α)→ [α]
improve t = abs t

Now, when we observe the problematic runtime overhead in (7),
we can replace it by

last (improve (flatten t)) .

That this replacement does not change the semantics of the program
is established by the following theorem, which provides the sought-
after general correctness statement.

Theorem 6. Let t :: ListLike δ ⇒ δ τ for some closed type τ .
Then

improve t = t[] .

Proof. We prove

unDL tDList = (t[] ++) , (9)

which by the definitions of improve and abs , and by t[] ++ [] =
t[], implies the claim. To do so, we first show that F : DList ⇔ []
with

F R = unDL ; ([R]→ [R]) ; (++)−1

is a ListLike-action, where the latter concept is defined as any
relational action F : κ1 ⇔ κ2 for type constructors κ1 and κ2

that are instances of ListLike such that

• (emptyκ1
, emptyκ2

) ∈ ∀R. F R,
• (consκ1 , consκ2) ∈ ∀R.R→ (F R → F R), and
• (appendκ1

, appendκ2
) ∈ ∀R. F R → (F R → F R).

Indeed,

• (emptyR, []) ∈ ∀R. F R, since for every R and (l1, l2) ∈
[R], (unDL emptyR l1, [] ++ l2) = (l1, l2) ∈ [R],
• (consR, (:)) ∈ ∀R. R → (F R → F R), since for every R,

(a, b) ∈ R, (f, bs) ∈ ([R] → [R]) ; (++)−1, and (l1, l2) ∈
[R],

(unDL (consR a (DL f)) l1, (b : bs) ++ l2) =
(a : f l1, b : bs ++ l2) ∈ [R]

by (a, b) ∈ R and (f l1, bs ++ l2) ∈ [R] (which holds due to
(f, (bs ++)) ∈ [R]→ [R] and (l1, l2) ∈ [R]), and
• (appendR, (++)) ∈ ∀R. F R → (F R → F R), since for

every R, (f, as) ∈ ([R] → [R]) ; (++)−1, (g, bs) ∈ ([R] →
[R]) ; (++)−1, and (l1, l2) ∈ [R],

(unDL (appendR (DL f) (DL g)) l1, (as ++ bs) ++ l2) =
(f (g l1), as ++ (bs ++ l2)) ∈ [R]

by (f, (as ++)) ∈ [R]→ [R], (g, (bs ++)) ∈ [R]→ [R], and
(l1, l2) ∈ [R].

Hence, (tDList, t[]) ∈ F idτ . Given that we have F idτ =
unDL ; ([idτ] → [idτ]) ; (++)−1 = unDL ; (++)−1, this im-
plies (9).

Note that the ListLike-action F : DList ⇔ [] used in the above
proof is the same as

F R = (DListR) ; rep−1 ,

given that DListR = unDL ; ([R]→ [R]) ; DL. This connection
suggests the following more general theorem, which can actually
be proved much like above.

Theorem 7. Let t :: ListLike δ ⇒ δ τ for some closed type τ ,
let κ1 and κ2 be instances of ListLike, and let h :: κ1 α →
κ2 α. If

• h emptyκ1
= emptyκ2

,
• for every closed type τ , a :: τ , and as :: κ1 τ ,
h (consκ1 a as) = consκ2 a (h as), and
• for every closed type τ and as, bs :: κ1 τ ,
h (appendκ1

as bs) = appendκ2
(h as) (h bs),

then
h tκ1 = tκ2 .

Theorem 6 is a special case of this theorem by setting κ1 = [],
κ2 = DList, and h = rep, and observing that

• rep [] = emptyR,
• for every closed type τ , a :: τ , and as :: [τ], rep (a : as) =

consR a (rep as),
• for every closed type τ and as, bs :: [τ], rep (as ++ bs) =

appendR (rep as) (rep bs), and
• abs ◦ rep = id ,

all of which hold by easy calculations. One key observation here
is that the third of the above observations does actually hold, in
contrast to its faulty “dual” (6) considered earlier in this section.

Of course, free theorems can now also be derived for other types
than those considered in Theorems 6 and 7. For example, for every
closed type τ , f :: ListLike δ ⇒ δ τ → δ τ , and h as in Theorem 7,
we get that:

fκ2 ◦ h = h ◦ fκ1 .

6. Discussion and Related Work
Of course, statements like that of Theorem 7 are not an entirely
new revelation. That statement can be read as a typical fusion law
for compatible morphisms between algebras over the signature de-
scribed by the ListLike class declaration. (For a given τ , consider
ListLike δ ⇒ δ τ as the corresponding initial algebra, κ1 τ and
κ2 τ as two further algebras, and the operation ·κi of instantiating

a t :: ListLike δ ⇒ δ τ to a tκi :: κi τ as initial algebra mor-
phism, or catamorphism. Then the conditions on h in Theorem 7
make it an algebra morphism and the theorem’s conclusion, also
expressible as h ◦ ·κ1 = ·κ2 , is “just” that of the standard cata-
morphism fusion law.) But being able to derive such statements
directly from the types in the language, based on its built-in ab-
straction facilities, immediately as well for more complicated types
(like ListLike δ ⇒ δ τ → δ τ instead of ListLike δ ⇒ δ τ), and
all this without going through category-theoretic hoops, is new and
unique to our approach.

There has been quite some interest recently in enhancing the
state of the art in reasoning about monadic programs. Filinski and
Støvring (2007) study induction principles for effectful data types.
These principles are used for reasoning about functions on data
types involving specific monadic effects (rather than about func-
tions that are parametric over some monad), and based on the func-
tions’ defining equations (rather than based on their types only),
and thus are orthogonal to our free theorems. But for their ex-
ample applications to formal models of backtracking, Filinski and
Støvring also use a form of relational reasoning very close to the
one appearing in our invocation of relational parametricity. In par-
ticular, our Definition 1 corresponds to their Definition 3.3. They
also use monad morphisms (not to be confused with their monad-
algebra morphisms, or rigid functions, playing the key role in their
induction principles). The scope of their relational reasoning is dif-
ferent, though. They use it for establishing the observational equiv-
alence of different implementations of the same monadic effect.
This is, of course, one of the classical uses of relational parametric-
ity: representation independence in different realizations of an ab-
stract data type. But it is only one possible use, and our treatment of
full polymorphism opens the door to other uses also in connection
with monadic programs. Rather than only relating different, but se-
mantically equivalent, implementations of the same monadic effect
(as hard-wired into Filinski and Støvring’s Definition 3.5), we ac-
tually connect monads embodying different effects. These connec-
tions lead to applications not previously in reach, such as our rea-
soning about preservation of invariants. It is worth pointing out that
Filinski (2007) does use monad morphisms for “subeffecting”, but
only for the discussion of hierarchies inside each one of two com-
peting implementations of the same set of monadic effects; the rela-
tional reasoning (via Monad-actions and so forth) is then orthogo-
nal to these hierarchies and again can only lead to statements about
observational equivalence of the two realizations overall, rather
than to more nuanced statements about programs in one of them
as such. The reason again, as with Filinski and Støvring (2007),
is that no full polymorphism is considered, but only parametrisa-
tion over same-effect-monads on top-level. Interestingly, though,
the key step in all our proofs in Section 4, namely finding a suitable
Monad-action, can be streamlined in the spirit of Proposition 3.7 of
Filinski and Støvring (2007) or Lemmas 45, 46 of Filinski (2007).
It seems fair to mention that the formal accounts of Filinski and
Støvring are very complex, but that this is necessarily so because
they deal with general recursion at both term and type level, while
we have completely dodged such issues. Treating general recursion
in a semantic framework typically involves a good deal of domain
theory such as considered by Birkedal et al. (2007). We only pro-
vide a very brief sketch of what interactions we expect between
general recursion and our developments from the previous sections
in Appendix C.

Swierstra (2008) proposes to code against modularly assembled
free monads, where the assembling takes place by building coprod-
ucts of signature functors corresponding to the term languages of
free monads. The associated type signatures are able to convey
some of the information captured by our approach. For example,
a monadic type Term PutStr Int can be used to describe com-

putations whose only possible side-effect is that of writing strings
to the output. Passing a list of values of that type to a function
f :: Monad µ ⇒ [µ Int] → µ Int clearly results in a value of
type Term PutStr Int as well. Thus, if it is guaranteed (note the
proof obligation) that “execution” of such a term value, on a kind
of virtual machine (Swierstra and Altenkirch 2007) or in the actual
IO monad, does indeed have no other side effect than potential out-
put, then one gets a statement in the spirit of our Example 6. On
the other hand, statements like the one in our Example 8 (also, say,
reformulated for exceptions in the IO monad) are not in reach with
that approach alone. Moreover, Swierstra’s approach to “subeffect-
ing” depends very much on syntax, essentially on term language
inclusion along with proof obligations on the execution functions
from terms to some semantic space. This dependence prevents di-
rectly obtaining statements roughly analogous to our Examples 5
and 7 using his approach. Also, depending on syntactic inclusion is
a very strong restriction indeed. For example, putStr “” is seman-
tically equivalent to return (), and thus without visible side-effect.
But nevertheless, any computation syntactically containing a call to
putStr would of necessity be assigned a type in a monad Term g
with g “containing” (with respect to Swierstra’s functor-level rela-
tion :≺:) the functor PutStr, even when that call’s argument would
eventually evaluate to the empty string. Thus, such a computation
would be banned from the input list in a statement like the one
we give below Example 6. It is not so with our more semantical
approach.

Dealing more specifically with concrete monads is the topic
of recent works by Hutton and Fulger (2008), using point-free
equational reasoning, and by Nanevski et al. (2008), employing an
axiomatic extension of dependent type theory.

On the tool side, we already mentioned the free theorems gener-
ator at http://linux.tcs.inf.tu-dresden.de/~voigt/ft/.
It deals gracefully with ordinary type classes (in the offline, shell-
based version even with user-defined ones), but has not yet been
extended for type constructor classes. There is also another free
theorems generator, written by Andrew Bromage, running in
Lambdabot (http://haskell.org/haskellwiki/Lambdabot).
It does not know about type or type constructor classes, but
deals with type constructors by treating them as fixed functors.
Thus, it can, for example, derive the statement (5) for functions
fκ :: [κ α] → κ [α], but not more general and more interesting
statements like those given in Theorem 5 and earlier, connecting
different Monad instances, concerning the beyond-functor aspects
of monads, or our results about ListLike.

Acknowledgments
I would like to thank the anonymous reviewers of more than one
version of this paper who have helped to improve it through their
criticism and suggestions. Also, I would like to thank Helmut Seidl,
who inspired me to consider free theorems involving type construc-
tor classes in the first place by asking a challenging question re-
garding the power of type(-only)-based reasoning about monadic
programs during a train trip through Munich quite some time ago.
(The answer to his question is essentially Example 7.)

References
L. Birkedal, R.E. Møgelberg, and R.L. Petersen. Domain-theoretical mod-

els of parametric polymorphism. Theoretical Computer Science, 388
(1–3):152–172, 2007.

S. Böhme. Free theorems for sublanguages of Haskell. Master’s thesis,
Technische Universität Dresden, 2007.

N.A. Danielsson, R.J.M. Hughes, P. Jansson, and J. Gibbons. Fast and loose
reasoning is morally correct. In Principles of Programming Languages,
Proceedings, pages 206–217. ACM Press, 2006.

http://linux.tcs.inf.tu-dresden.de/~voigt/ft/
http://haskell.org/haskellwiki/Lambdabot

L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with
embedded functions (or, Programs from outer space). In Principles
of Programming Languages, Proceedings, pages 284–294. ACM Press,
1996.

A. Filinski. On the relations between monadic semantics. Theoretical
Computer Science, 375(1–3):41–75, 2007.

A. Filinski and K. Støvring. Inductive reasoning about effectful data types.
In International Conference on Functional Programming, Proceedings,
pages 97–110. ACM Press, 2007.

A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforesta-
tion. In Functional Programming Languages and Computer Architec-
ture, Proceedings, pages 223–232. ACM Press, 1993.

R.J.M. Hughes. A novel representation of lists and its application to
the function “reverse”. Information Processing Letters, 22(3):141–144,
1986.

G. Hutton and D. Fulger. Reasoning about effects: Seeing the wood through
the trees. In Trends in Functional Programming, Draft Proceedings,
2008.

P. Johann and J. Voigtländer. Free theorems in the presence of seq. In Prin-
ciples of Programming Languages, Proceedings, pages 99–110. ACM
Press, 2004.

J. Kučan. Metatheorems about Convertibility in Typed Lambda Calculi:
Applications to CPS Transform and “Free Theorems”. PhD thesis,
Massachusetts Institute of Technology, 1997.

J. Launchbury and S.L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293–341, 1995.

S. Liang, P. Hudak, and M.P. Jones. Monad transformers and modular
interpreters. In Principles of Programming Languages, Proceedings,
pages 333–343. ACM Press, 1995.

J.C. Mitchell and A.R. Meyer. Second-order logical relations (Extended
abstract). In Logic of Programs, Proceedings, volume 193 of LNCS,
pages 225–236. Springer-Verlag, 1985.

E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93(1):55–92, 1991.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot:
Dependent types for imperative programs. In International Conference
on Functional Programming, Proceedings, pages 229–240. ACM Press,
2008.

S.L. Peyton Jones and P. Wadler. Imperative functional programming.
In Principles of Programming Languages, Proceedings, pages 71–84.
ACM Press, 1993.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In Infor-
mation Processing, Proceedings, pages 513–523. Elsevier, 1983.

F. Stenger and J. Voigtländer. Parametricity for Haskell with imprecise error
semantics. In Typed Lambda Calculi and Applications, Proceedings,
volume 5608 of LNCS, pages 294–308. Springer-Verlag, 2009.

W. Swierstra. Data types à la carte. Journal of Functional Programming,
18(4):423–436, 2008.

W. Swierstra and T. Altenkirch. Beauty in the beast — A functional
semantics for the awkward squad. In Haskell Workshop, Proceedings,
pages 25–36. ACM Press, 2007.

I. Takeuti. The theory of parametricity in lambda cube. Manuscript, 2001.
J. Voigtländer. Concatenate, reverse and map vanish for free. In Inter-

national Conference on Functional Programming, Proceedings, pages
14–25. ACM Press, 2002.

J. Voigtländer. Asymptotic improvement of computations over free monads.
In Mathematics of Program Construction, Proceedings, volume 5133 of
LNCS, pages 388–403. Springer-Verlag, 2008a.

J. Voigtländer. Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages 29–35.
ACM Press, 2008b.

J. Voigtländer. Bidirectionalization for free! In Principles of Programming
Languages, Proceedings, pages 165–176. ACM Press, 2009.

D. Vytiniotis and S. Weirich. Type-safe cast does no harm: Syntactic
parametricity for Fω and beyond. Manuscript, 2009.

P. Wadler. Theorems for free! In Functional Programming Languages and
Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

P. Wadler. The essence of functional programming (Invited talk). In
Principles of Programming Languages, Proceedings, pages 1–14. ACM
Press, 1992.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In Principles of Programming Languages, Proceedings, pages 60–76.
ACM Press, 1989.

A. Proof of Theorem 1
We prove that for every l′ :: [Int],

fκ (map returnκ l
′) = returnκ (unId (fId (map Id l′))) ,

where
newtype Id α = Id {unId :: α}

instance Monad Id where
return a = Id a
Id a >>= k = k a

To do so, we first show that F : κ⇔ Id with

F R = return−1
κ ; R ; Id ,

where “;” is (forward) relation composition and “−1” gives the
inverse of a function graph, is a Monad-action. Indeed,

• (returnκ, return Id) ∈ ∀R. R → F R, since for every R and
(a, b) ∈ R, (returnκ a, return Id b) = (returnκ a, Id b) ∈
return−1

κ ; R ; Id, and
• ((>>=κ), (>>=Id)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S), since for every R, S, (a, b) ∈ R, and (k1, k2) ∈ R →
F S, (returnκ a >>=κ k1, Id b >>=Id k2) = (k1 a, k2 b) ∈
F S. (Note the use of monad law (1) for κ.)

Hence, by what we derived towards the end of Section 3, (fκ, fId) ∈
[F id Int]→ F id Int. Given that we haveF id Int = return−1

κ ; Id =
(returnκ ◦ unId)−1, this implies the claim.

B. Proof of Theorem 2
We prove that for every l :: [κ Int],

p (fκ l) = unId (fId (map (Id ◦ p) l)) ,

where the type constructor Id and its Monad instance definition
are as in the proof of Theorem 1. To do so, we first show that
F : κ⇔ Id with

F R = p ; R ; Id

is a Monad-action. Indeed,

• (returnκ, return Id) ∈ ∀R. R → F R, since for every R and
(a, b) ∈ R, (returnκ a, b) ∈ p ; R by p (returnκ a) = a, and
• ((>>=κ), (>>=Id)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S), since for every R, S, (m, b) ∈ p ; R, and (k1, k2) ∈
R → F S, (m >>=κ k1, Id b >>=Id k2) ∈ p ; S ; Id by
p (m >>=κ k1) = p (k1 (p m)) and (k1 (p m), k2 b) ∈
p ; S ; Id (which holds due to (k1, k2) ∈ R → F S and
(p m, b) ∈ R).

Hence, (fκ, fId) ∈ [F id Int] → F id Int. Given that we have
F id Int = p ; Id = Id ◦ p = p ; unId−1, this implies the claim.

C. Free Theorems, the Ugly Truth
Free theorems as described in Section 2 are beautiful. And very
nice. Almost too good to be true. And actually they are not. At least
not unrestricted and in a setting more closely resembling a modern

functional language than the plain polymorphic lambda-calculus
for which relational parametricity was originally conceived. In par-
ticular, problems are caused by general recursion with its poten-
tial for nontermination. We have purposefully ignored this issue
throughout the main body of the paper, so as to be able to explain
our ideas and new abstractions in the most basic surrounding. In
a sense, our reasoning has been “up to ⊥”, or “fast and loose, but
morally correct” (Danielsson et al. 2006). We leave a full formal
treatment of free theorems involving type constructor classes in the
presence of partiality as a challenge for future work, but use this
appendix to outline some refinements that are expected to play a
central role in such a formalisation.

So what is the problem with potential nontermination? Let us
first discuss this question based on the simple example

f :: [α]→ [α]

from Section 2. There, we argued that the output list of any such f
can only ever contain elements from the input list. But this claim
is not true anymore now, because f might just as well choose, for
some element position of its output list, to start an arbitrary looping
computation. That is, while f certainly (and still) cannot possibly
make up new elements of any concrete type to put into the output,
such as 42 or True, it may very well put ⊥ there, even while not
knowing the element type of the lists it operates over, because ⊥
does exist at every type. So the erstwhile claim that for any input
list l the output list f l consists solely of elements from l has to be
refined as follows.

For any input list l the (potentially partial or infinite) output
list f l consists solely of elements from l and/or ⊥.

The decisions about which elements from l to propagate to the
output list, in which order and multiplicity, and where to put⊥ can
again only be made based on the input list l, and only by inspecting
its length (or running into an undefined tail or an infinite list).

So for any pair of lists l and l′ of same length (refining this
notion to take partial and infinite lists into account) the lists
f l and f l′ are formed by making the same position-wise
selections of elements from l and l′, respectively, and by
inserting ⊥ at the same positions, if any.

For any l′ = map g l, we then still have that f l and f l′ are of
the same length and contain position-wise exactly corresponding
elements from l and l′ = map g l, at those positions where f
takes over elements from its input rather than inserting⊥. For those
positions where f does insert⊥, which will then happen equally for
f l and f l′, we may only argue that the element in f l′ contains
the g-image of the corresponding element in f l if indeed ⊥ is the
g-image of ⊥, that is, if g is a strict function.

So for any list l and, importantly, strict function g, we have
f (map g l) = map g (f l).

The formal counterpart to the extra care exercised above regarding
potential occurrences of ⊥ is the provision of Wadler (1989, Sec-
tion 7) that only strict and continuous relations should be allowed
as interpretations for types.

In particular, when interpreting quantification over type vari-
ables by quantification over relation variables, those quantified re-
lations are required to contain the pair (⊥,⊥), also signified via
the added · in the new notation R : τ1

·⇔ τ2. With straight-
forward changes to the required constructions on relations, such
as explicitly including the pair (⊥,⊥) in [R] : [τ1]

·⇔ [τ2] and
Maybe R : Maybe τ1

·⇔ Maybe τ2, and replacing the least by
the greatest fixpoint in the definition of [R], we get a treatment of
free theorems that is sound even for a language including general
recursion, and thus nontermination.

For the extension to the setting with type constructor classes
(cf. Section 3), we will need to mandate that any relational action,
now denoted F : κ1

·⇔ κ2, must preserve strictness, i.e., map
R : τ1

·⇔ τ2 to F R : κ1 τ1
·⇔ κ2 τ2. Apart from that,

Definition 1, for example, is expected to remain unchanged (except
thatR and S will now range over strict relations, of course).

Under these assumptions, we can investigate the impact of the
presence of general recursion on the results seen in the main body
of this paper. Consider Theorem 1, for example. In order to have
F : κ

·⇔ Id in its proof, we need to change the definition of F R
as follows:

F R = {(⊥,⊥)} ∪ (return−1
κ ; R ; Id) .

For this relational action to be a Monad-action, we would need the
additional condition that⊥ >>=κ k1 = k1 ⊥ for any choice of k1.
Then, (fκ, fId) ∈ [F id Int] → F id Int would allow to derive the
following variant, valid in the presence of general recursion and⊥.

Theorem 1’. Let f :: Monad µ ⇒ [µ Int] → µ Int, let κ be
an instance of Monad satisfying law (1) and ⊥ >>=κ k =
k ⊥ for every (type-appropriate) k, and let l :: [κ Int]. If
every element in l is a returnκ-image or ⊥, then so is fκ l.

Note that the Reader monad, for example, satisfies the conditions
for applying the thus adapted theorem.

Similar repairs are conceivable for the other statements we have
derived, or one might want to derive. Just as another sample, we
expect Example 7 to change as follows.

Example 7’. Let f :: Monad µ ⇒ [µ Int] → µ Int, let τ be
a closed type, and let l :: [State τ Int]. If for every element
State g in l, the property P (g) defined as

P (g) := ∀s. snd (g s) = s ∨ snd (g s) = ⊥
holds, then also f l is of the form State g for some g with
P (g).

Note that even if we had kept the stronger precondition that
snd ◦ g = id for every element State g in l, it would be im-
possible to prove snd ◦ g = id instead of the weaker P (g) for
f l = State g. Just consider the case that f invokes an immedi-
ately looping computation, i.e., f l = ⊥ = State ⊥.8 The g = ⊥
here satisfies P (g), but not snd ◦ g = id .

8 The equality ⊥ = State ⊥ holds by the semantics of newtype in
Haskell.

	1 Introduction
	2 Free Theorems, in Full Beauty
	3 The Extension to Type Constructor Classes
	4 One Application Field: Reasoning about Monadic Programs
	4.1 Purity Preservation
	4.2 Safe Value Extraction
	4.3 Monad Subspacing
	4.4 Effect Abstraction
	4.5 A More Polymorphic Example

	5 Another Application: Difference Lists, Transparently
	6 Discussion and Related Work
	Acknowledgments
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Free Theorems, the Ugly Truth

