Knuth's 0-1-Principle and Beyond

Janis Voigtlander

Technische Universitat Dresden

April 23rd, 2009

The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:
2] 7]9]8]4]6] — [4a]6]7]8]9]12]

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

» the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

12 15[7] 912 4 [11]

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

12 15[7] 012 4 [11]
1 :

1

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

12 15[7] 012 4 [11]
1 :

1

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

12 15[7] 012 4 [11]
1 D

1

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

[2]4]7]9]12[15]11]

1 t
i J

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

[2]4]7]9]12[15]11]

ot
i J

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

[2]4]7]9]12[15]11]
Y

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

[2]4]7]9]12[15]11]
D

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:

[2]4]7]9]12[15]11]

fot
j i

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:
2]4] 7] 12[15]11]

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:
2 4] 7] 12]15]11]

ot
i J

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:
2 4] 7] 12]15]11]
)

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:
2 4] 7] 12]15]11]
1

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
Realisation:
1eatt 0 K n-1

[—3i [x] j— |

Example:
2 4] 7] 12]15]11]
f t

1

Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

» the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: T — T — Bool

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: T — T — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: T — T — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap :: (1,7) — (7,7)

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: T — T — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap :: (1,7) — (7,7)

Bitonic Sort

1. Split the input list into two sublists of equal length.

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

Bitonic Sort

1. Split the input list into two sublists of equal length.

Notes:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

» works only for lists whose length is a power of two

Bitonic Sort

1. Split the input list into two sublists of equal length.

Notes:

Sort the two sublists recursively, the second one in
reverse order.

. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

» works only for lists whose length is a power of two
» complexity is O(n - log(n)?)

Bitonic Sort

1. Split the input list into two sublists of equal length.

Notes:

Sort the two sublists recursively, the second one in

reverse order.

Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

» works only for lists whose length is a power of two
» complexity is O(n - log(n)?)
» particularly suitable for hardware and parallel implementations

Bitonic Sort

1. Split the input list into two sublists of equal length.

Notes:

Sort the two sublists recursively, the second one in
reverse order.

Merge the sorted sublists as follows:

3.1
3.2
3.3
3.4

Apply cswap to pairs of elements at corresponding positions.
Split each of the resulting lists in the middle.

Merge the resulting pairs of lists recursively.

Concatenate the results.

works only for lists whose length is a power of two

complexity is O(n - log(n)?)

particularly suitable for hardware and parallel implementations
correctness is not obvious

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: 777

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell.

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort i ((a, @) — (a, @) — [a] — [a]

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort i ((a, @) — (a, @) — [a] — [a]

f 2 (Int,Int) — (Int, Int)

f (x,y) = if x >y then (y,x) else (x,y)
g :: (Bool, Bool) — (Bool, Bool)

g (x,y)=(x&&y,x||y)

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort = ((a,) = (o, @) — [a] — [o]
f 2 (Int,Int) — (Int, Int)
f (x,y) =if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=(x&&y,x|ly)

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort i ((a, @) — (a, @) — [a] — [a]

f 2 (Int,Int) — (Int, Int)
f (x,y) =if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If ¥xs :: [Bool], ys = sort g xs. P(xs,ys) A Q(ys),
then Vxs :: [Int],ys = sort f xs. P(xs,ys) A Q(ys),
where P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Q(ys) = ys is sorted

Using the Free Theorems Generator

Input: sort::((a,a)->(a,a))->[a]l->[a]

Output: forall t1,t2 in TYPES, h::t1->t2.
forall f::(t1,t1)->(t1,t1).
forall g::(t2,t2)->(t2,t2).
(forall (x,y) in 1lift_{(,)}(h,h).
(f x,g y) in 1ift_{(,)}(h,h))
==> (forall xs::[t1].
map h (sort f xs) = sort g (map h xs))

1ift_{(,)}(h,h)
= {((x1,x2),(y1,y2)) | (h x1 = y1)
&& (h x2 = y2)}

More Specific (and Intuitive)

For every sort :: ((o, @) — (v, @) — [a] — [,
f 2 (Int,Int) — (Int,Int), g :: (Bool, Bool) — (Bool, Bool), and
h:: Int — Bool:

p

sort f

(Int, Int) ————(Int, Int) [Int] —————Int]
h X h = hxh = maph = map h
(Bool, Bool) 3 (Bool, Bool) [Bool] —o= Z [Bool]

More Specific (and Intuitive)

For every sort :: ((o, @) — (v, @) — [a] — [,
f 2 (Int,Int) — (Int,Int), g :: (Bool, Bool) — (Bool, Bool), and
h:: Int — Bool:

p

sort f

(Int, Int) ————(Int, Int) [Int] —————Int]
h X h = hxh = maph = map h
(Bool, Bool) 3 (Bool, Bool) [Bool] —o= Z [Bool]

If f and g are as defined before, then the precondition is fulfilled
for any h of the form h x = n < x for some n :: Int.

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort i ((a, @) — (a, @) — [a] — [a]

f 2 (Int,Int) — (Int, Int)
f (x,y) =if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If ¥xs :: [Bool], ys = sort g xs. P(xs,ys) A Q(ys),
then Vxs :: [Int],ys = sort f xs. P(xs,ys) A Q(ys),
where P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Q(ys) = ys is sorted

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)
Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).

Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same.

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

Xxs =map h us
ys =sort g (map h us)

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

Xxs =map h us
ys =sort g (map h us) =map h (sort f us)

Proof of “P on [Bool] implies P on [Int]"

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool], ys = sort g xs. P(xs,ys)
To prove: V¥xs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

Xxs =map h us
ys =sort g (map h us) =map h (sort f us) =map h vs

Proof of “Q on [Bool] implies Q on [Int]”
Recall: Q(ys) := ys is sorted

10

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)

10

Proof of “Q on [Bool] implies Q on [Int]”
Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

10

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with = Q(vs).

10

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with = Q(vs).
Then there are n < m such that an m occurs in vs before an n.

10

Proof of “Q on [Bool] implies Q on [Int]”
Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)
Assume there exist us :: [Int] and vs = sort f us with = Q(vs).

Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.

10

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with = Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us)

10

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with = Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us) =map h (sort f us)

10

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with = Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us) =map h (sort f us) =map h vs

10

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort = ((a,) = (o, @) — [a] — [o]
f 2 (Int,Int) — (Int, Int)
f (x,y) =if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=(x&&y,x|ly)

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

11

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

12

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

12

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

» Can we do something similar for other algorithm classes?

12

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

» Can we do something similar for other algorithm classes?

» Good candidates: algorithms parametrised over some
operation, like cswap :: (o,) — (v, @) in the case of sorting.

12

Parallel Prefix Computation

Given: inputs x1,...,x, and an associative operation ¢

Task: compute the values x3,x1 @ x2, . .

X1 DX DD Xy

13

Parallel Prefix Computation

Given: inputs x1,...,x, and an associative operation ¢

Task: compute the values x3,x1 @ x2, . .

Solution: X1 Xo X3 X4 X5 Xg X7 Xg
&3]

N\
®

N\
@

X1 DX DD Xy

13

Parallel Prefix Computation

Alternative: X1 Xp X3 X4 X5 Xg X7 Xg

\\Ji \\J:
() 6‘9 D 6‘9
b P @6‘9

14

Parallel Prefix Computation

Alternative:

X1 X2 X3 X4 X5 X X7 Xg

\\J:
A

D

N
@

X1 X2 X3

N
<

Sy

S

]

2]

@

I

o
THT

X4 X5 Xeo X7 X8

@

my

%

NN

@ @
e

D

—®

|
©

14

In Haskell

Functions of type:

scanll (@ —» a — a) — [a] — [o]

15

In Haskell

Functions of type:

scanll (@ —» a — a) — [a] — [o]

For example, a la [Sklansky 1960]:

sklansky : (0 — a — a) — [a] — [q]
sklansky (®) [x] = [x]
sklansky (&) xs = us+vs

where t = ((length xs) + 1) ‘div' 2
(ys,zs) = splitAt t xs
us = sklansky (@) ys

vs = [(last us) @& v|v « sklansky (&) zs]

15

Sklansky's Method Visualised

X1 X2
\ |
T

16

Sklansky's Method Visualised

X1 X2 X3
\ |
S¥

N\

T

16

Sklansky's Method Visualised

X1 X2 X3 X

\\—ﬁ
A

T

16

Sklansky's Method Visualised

X1 X2 X3 X4 Xs

N N
@ @
@

T

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xp

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 X X7

N[N\
@ @
N\

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 X X7 X8

\\Ji \\Ji
b E‘B) 6‘9
%

16

Sklansky's Method Visualised

X1 X0 X3 X4 X5 Xe X7 Xg Xog

N
o

N\

%)

\T

N _ﬁ
© | &

N\

o b

|
i

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 X X7 Xg X9 X10

N
©

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11

N
©

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 X X7 Xg X9 X10 X11 X12

N
©

N\

%)

N
©

N

|

i
@

N
©

N\

N
©
N\

@
T

—b—D—

X
N N1
TeTTY

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11 X12 X13

N
o

\T

N\

o | &

| AN
S
\T

I

S—>D

N N
S%) S%)
N\
Nk
XX
N1 N1

T

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11 X12 X13 X14

N
o

\T

N\

o | &

| AN
S
\T

I

i
@

N\
S

&

N
S

N\

I I
7T

o D
T

®
I
T

.
I
I

—E—0—&

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xe X7 Xg Xg X10 X11 X12 X13 X14 X15

NN NN NN
@ 2] 2] @ S2) @
N Sy \—L \

o D o D @
&J—vh

T

Sklansky's Method Visualised

X1 X2 X3 X4 X5 X X7 Xg Xg X10 X11 X12 X13 X14 X15 X16

NN N N N N NN
©® © ©® ©® S5} ©® ©® ©
N N | \ \
@@\T @6‘9 b D @6‘9

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12 X13 X14 X15 X16 X17

N
@

AN
®

N
S

N
®

2]

N

S

S

\
S @
N

|
@
@

N

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xg X7 Xg X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

N\ N\ N\ N\ N\ N\ N\ N\
(2] (2]) () (2] (2]) ()
N\ N | N\ \

b e b b e b

N N

D P D P
2000 Lo

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

N
®

N
©

AN
®

N
S

2]

N
o

N\

N
o

NN\
SP 7] E‘B
O b
R

@ D
XXX
N1 NT N1
TTTrTy

16

Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xg X7 Xg Xg X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

N
©

AN
®

N
©

N
o

N\

N
o

|
®

16

Investigating Particular Instances Only

Knuth's 0-1-Principle
If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

17

Investigating Particular Instances Only

Knuth's 0-1-Principle
If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle 7

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

17

Investigating Particular Instances Only
Knuth's 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle 7
If a parallel prefix algorithm is correct (for associative operations)

on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

17

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanll (@ — a — a) — [a] — [a]
scanll (@) (x : xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

18

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanll (@ — a — a) — [a] — [a]
scanll (@) (x : xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate :: (a = a — a) — [a] — [a]

18

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanll (@ — a — a) — [a] — [a]
scanll (@) (x : xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]

data Three = Zero | One | Two

18

A Knuth-like 0-1-2-Principle [V. 2008]

Given:

Theorem:

scanll (@ — a — a) — [a] — [a]
scanll (@) (x: xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]
data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = scanll () xs,

then the same holds for every type 7, xs :: [7], and
associative (©) 17 — 7 — 7.

18

Why 0-1-27 And How?

A question: What can candidate i1 (@« — o —) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?

19

Why 0-1-27 And How?

A question: What can candidate i1 (@« — o —) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?

The answer: Create an output list consisting of expressions built
from @ and xq,...,x,. Independently of the a-type !

19

Why 0-1-27 And How?

A question: What can candidate i1 (@« — o —) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?

The answer: Create an output list consisting of expressions built
from @© and xq, ..., x,. Independently of the a-type !

Among these expressions, there are good ones:

/\ VRN

O Xa @ ©®

/\ /NN
@S X3 X1 X2 © X5
/\ /\

19

Why 0-1-27 And How?

A question: What can candidate i1 (@« — o —) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?

The answer: Create an output list consisting of expressions built
from @© and xq, ..., x,. Independently of the a-type !

Among these expressions, there are good ones:

/\ 7N\
@ Xa @ ®
VAN . /N /N
D X3 X1 X2 & X5
/\ /\
X1 X2 X3 Xa
bad ones:
VRN /\ /N
©® O] X1 D @ X1 L
/\ /N /N /N o
X1 X2 X3 Xg X2 X2 X3 X2

Why 0-1-27 And How?

Among these expressions, there are good ones:

/\ 7N\
O X4 s>
VAN /\ /N cee
o X3 X1 X2 b X5
/\
X1 X2 X3 Xa
bad ones:
/ \ / \ /\
S e
/ \ / \ ' / \ /\ '
X1 X2 X3 Xs X3 X0
and ones in the wrong position:
N /69\ / \
1
oo / \ / \ Y
X2 X3 Xa

19

That's How!

Let
1 ‘ Zero

One

Two

Zero | Zero
One | One
Two | Two

One
Two
Two

Two
Two
Two

@2 | Zero One Two
and Zero | Zero One Two
One | One One Two
Two | Two One Two

That's How!

Let
1 ‘ Zero

One

Two

Zero | Zero
One | One
Two | Two

If candidate (1) is correct on each list of the form

One
Two
Two

Two
Two
Two

and

@2 | Zero One Two
Zero | Zero One Two
One | One One Two
Two | Two One Two

[(Zero,)* One (,Zero)* (, Two)*]

That's How!

Let
D1 ‘ Zero One Two
Zero | Zero One Two
One | One Two Two
Two | Two Two Two

If candidate (1) is correct on each list of the form

and

®o ‘ Zero One Two
Zero | Zero One Two
One | One One Two
Two | Two One Two

[(Zero,)* One (,Zero)* (, Two)*]

and candidate () is correct on each list of the form

[(Zero,)" One, Two (,Zero)*]

then candidate is correct for associative & at arbitrary type.

20

A Knuth-like 0-1-2-Principle [V. 2008]

Given:

Theorem:

scanll (@ — a — a) — [a] — [a]
scanll (@) (x: xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]
data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = scanll () xs,

then the same holds for every type 7, xs :: [7], and
associative (©) 17 — 7 — 7.

21

Using the Free Theorems Generator

Input: candidate :: (a -> a -> a) -> [a] -> [al

Output: forall t1,t2 in TYPES, f :: t1 -> t2.
forall g :: t1 -> t1 -> t1.
forall h :: t2 -> t2 -> t2.
(forall x :: tl. forall y :: tl.
f(gxy)=h(Ex (y)
==> (forall z :: [t1].
map f (candidate g z)
= candidate h (map f z))

22

Rephrased

For every choice of types 71,7 and functions f :: 71 — 7,
(®) 11— 1 — 711, and (B) =) — T2 — T

candidate (®
L X T1 2 ol [1] ()[Tl]
f xXf = f = map f = map f
X T ..
T2 %72 3 2) by (@)[72]

23

A Knuth-like 0-1-2-Principle [V. 2008]

Given:

Theorem:

scanll (@ — a — a) — [a] — [a]
scanll (@) (x: xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]
data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = scanll () xs,

then the same holds for every type 7, xs :: [7], and
associative (©) 17 — 7 — 7.

24

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (1) is correct on each list of the
form [(Zero,)* One (,Zero)* (, Two)*] and candidate (&>) is
correct on each list of the form [(Zero,)* One, Two (, Zero)*],

then for every n > 0,
candidate (++) [[k] | k < [0..n]] = [[0..k] | k < [0..n]] (*).

25

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (1) is correct on each list of the
form [(Zero,)* One (,Zero)* (, Two)*] and candidate (&>) is
correct on each list of the form [(Zero,)* One, Two (, Zero)*],

then for every n > 0,
candidate (++) [[k] | k < [0..n]] = [[0..k] | k < [0..n]] (*).

Proposition 2: If for every n > 0, (*) holds, then candidate is
correct for associative ¢ at arbitrary type.

25

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (1) is correct on each list of the
form [(Zero,)* One (,Zero)* (, Two)*] and candidate (&>) is
correct on each list of the form [(Zero,)* One, Two (, Zero)*],

then for every n > 0,
candidate (++) [[k] | k < [0..n]] = [[0..k] | k < [0..n]] (*).

Proposition 2: If for every n > 0, (*) holds, then candidate is
correct for associative ¢ at arbitrary type.

[[k] | k < [0..n]]
candidate (+)

[Int] x [Int] — = [Int] ([Int]] - [[Int]]
fxf - f = map f = map f
TOX Tp T2 ™ - [12]

) candidate ()

25

What Else?

» For parallel prefix computation, formalisation available
in Isabelle/HOL [Béhme 2007].

26

What Else?

» For parallel prefix computation, formalisation available
in Isabelle/HOL [Béhme 2007].

» There is still an interesting story to tell behind how
“0-1-2", @1, Do, ... were found.

26

What Else?

» For parallel prefix computation, formalisation available
in Isabelle/HOL [Béhme 2007].

» There is still an interesting story to tell behind how
“0-1-2", @1, Do, ... were found.

» For which other algorithm classes can one play
the same trick?

26

References |

@ G.E. Blelloch.
Prefix sums and their applications.
In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages
35-60. Morgan Kaufmann, 1993.

@ S. Bohme.
Much Ado about Two. Formal proof development.
In The Archive of Formal Proofs.
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml,
2007.

[§ A. Bove and T. Coquand.
Formalising bitonic sort in type theory.
In Types for Proofs and Programs, TYPES 2004, Revised
Selected Papers, volume 3839 of LNCS, pages 82-97.
Springer-Verlag, 2006.

http://afp.sf.net/entries/MuchAdoAboutTwo.shtml

References |l

@ N.A. Day, J. Launchbury, and J.R. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings, 1999.

@ P. Dybjer, Q. Haiyan, and M. Takeyama.
Verifying Haskell programs by combining testing, model
checking and interactive theorem proving.
Information & Software Technology, 46(15):1011-1025, 2004.

@ D.E. Knuth.
The Art of Computer Programming, volume 3: Sorting and
Searching.
Addison-Wesley, 1973.

28

References Il|

[M. Sheeran.
Searching for prefix networks to fit in a context using a lazy
functional programming language.
Hardware Design and Functional Languages, 2007.

[§ J. Sklansky.
Conditional-sum addition logic.
IRE Transactions on Electronic Computers, EC-9(6):226-231,
1960.

@ J. Voigtlander.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29-35. ACM Press, 2008.

	The Sorting Problem
	Some Sort Algorithms
	-- using a comparison function
	-- using comparison-swap

	Knuth's 0-1-Principle
	-- informally
	-- formally
	-- derived as a free theorem

	Parallel Prefix Computation
	A Knuth-like 0-1-2-Principle
	Conclusion
	References

