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The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:
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Quicksort

1. Choose an element x from the input list.
2. Partition the remaining elements into two sublists:
> one containing all elements smaller than x, and
» one containing all elements greater or equal to x.
3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
» the sorted first sublist,
» the element x, and
» the sorted second sublist.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

Notes:

Sort the two sublists recursively, the second one in
reverse order.

Merge the sorted sublists as follows:

3.1
3.2
3.3
3.4

Apply cswap to pairs of elements at corresponding positions.
Split each of the resulting lists in the middle.

Merge the resulting pairs of lists recursively.

Concatenate the results.

works only for lists whose length is a power of two

complexity is O(n - log(n)?)

particularly suitable for hardware and parallel implementations
correctness is not obvious
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Using the Free Theorems Generator

Input: sort::((a,a)->(a,a))->[a]l->[a]

Output: forall t1,t2 in TYPES, h::t1->t2.
forall f::(t1,t1)->(t1,t1).
forall g::(t2,t2)->(t2,t2).
(forall (x,y) in 1lift_{(,)}(h,h).
(f x,g y) in 1ift_{(,)}(h,h))
==> (forall xs::[t1].
map h (sort f xs) = sort g (map h xs))

1ift_{(,)}(h,h)
= {((x1,x2),(y1,y2)) | (h x1 = y1)
&& (h x2 = y2)}



More Specific (and Intuitive)

For every sort :: ((o, @) — (v, @) — [a] — [,
f 2 (Int,Int) — (Int,Int), g :: (Bool, Bool) — (Bool, Bool), and
h:: Int — Bool:

p

sort f

(Int, Int) ————(Int, Int) [Int] —————Int]
h X h = hxh = maph = map h
(Bool, Bool) 3 (Bool, Bool) [Bool] —o= Z [Bool]
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If f and g are as defined before, then the precondition is fulfilled
for any h of the form h x = n < x for some n :: Int.
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» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

» Can we do something similar for other algorithm classes?

» Good candidates: algorithms parametrised over some
operation, like cswap :: (o, ) — (v, @) in the case of sorting.

12



Parallel Prefix Computation

Given: inputs x1,...,x, and an associative operation ¢

Task: compute the values x3,x1 @ x2, . .

X1 DX DD Xy
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Parallel Prefix Computation

Given: inputs x1,...,x, and an associative operation ¢

Task: compute the values x3,x1 @ x2, . .

Solution: X1 Xo X3 X4 X5 Xg X7 Xg
&3]

N\
®

N\
@

X1 DX DD Xy
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Parallel Prefix Computation

Alternative: X1 Xp X3 X4 X5 Xg X7 Xg

\\Ji \\J:
() 6‘9 D 6‘9
b P @6‘9
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Parallel Prefix Computation

Alternative:

X1 X2 X3 X4 X5 X X7 Xg
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In Haskell

Functions of type:

scanll (@ —» a — a) — [a] — [o]
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In Haskell

Functions of type:

scanll (@ —» a — a) — [a] — [o]

For example, a la [Sklansky 1960]:

sklansky : (0 — a — a) — [a] — [q]
sklansky (®) [x] = [x]
sklansky (&) xs = us+vs

where t = ((length xs) + 1) ‘div' 2
(ys,zs) = splitAt t xs
us = sklansky (@) ys

vs = [(last us) @& v|v « sklansky (&) zs]
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Sklansky's Method Visualised

X1 X2
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Sklansky's Method Visualised
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Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xp
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xe X7 Xg Xg X10 X11 X12 X13 X14 X15

NN NN NN
@ 2] 2] @ S2) @
N Sy \—L \

o D o D @
&J—vh

T




Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised
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Sklansky's Method Visualised

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

N
®

N
©

AN
®

N
S

2]

N
o

N\

N
o

NN\
SP 7] E‘B
O b
R

@ D
XXX
N1 NT N1
TTTrTy

16



Sklansky's Method Visualised
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Investigating Particular Instances Only

Knuth's 0-1-Principle
If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.
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A Knuth-like 0-1-Principle 7

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.
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Investigating Particular Instances Only
Knuth's 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle 7
If a parallel prefix algorithm is correct (for associative operations)

on the Booleans, it is so on arbitrary value sets.

Unfortunately not !
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A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanll (@ — a — a) — [a] — [a]
scanll (@) (x : xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)
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A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanll (@ — a — a) — [a] — [a]
scanll (@) (x : xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate :: (a = a — a) — [a] — [a]
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go x (y :ys) = x: (go (xy) ys)
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A Knuth-like 0-1-2-Principle [V. 2008]

Given:

Theorem:

scanll (@ — a — a) — [a] — [a]
scanll (@) (x: xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]
data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = scanll () xs,

then the same holds for every type 7, xs :: [7], and
associative (©) 17 — 7 — 7.

18



Why 0-1-27 And How?

A question: What can candidate i1 (@« — o — ) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?
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A question: What can candidate i1 (@« — o — ) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?

The answer: Create an output list consisting of expressions built
from @© and xq, ..., x,. Independently of the a-type !

Among these expressions, there are good ones:
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Why 0-1-27 And How?

A question: What can candidate i1 (@« — o — ) — [a] — [¢]
do, given an operation & and input list [x1,...,x,] ?

The answer: Create an output list consisting of expressions built
from @© and xq, ..., x,. Independently of the a-type !

Among these expressions, there are good ones:

/\ 7N\
@ Xa @ ®
VAN . /N /N
D X3 X1 X2 & X5
/\ /\
X1 X2 X3 Xa
bad ones:
VRN /\ /N
©® O] X1 D @ X1 L
/\ /N /N /N o
X1 X2 X3 Xg X2 X2 X3 X2



Why 0-1-27 And How?

Among these expressions, there are good ones:

/\ 7N\
O X4 s>
VAN /\ /N cee
o X3 X1 X2 b X5
/\
X1 X2 X3 Xa
bad ones:
/ \ / \ /\
S e
/ \ / \ ' / \ /\ '
X1 X2 X3 Xs X3 X0
and ones in the wrong position:
N /69\ / \
1
oo / \ / \ Y
X2 X3 Xa

19



That's How!

Let
1 ‘ Zero

One

Two

Zero | Zero
One | One
Two | Two

One
Two
Two

Two
Two
Two

@2 | Zero One Two
and Zero | Zero One Two
One | One One Two
Two | Two One Two



That's How!

Let
1 ‘ Zero

One

Two

Zero | Zero
One | One
Two | Two

If candidate (1) is correct on each list of the form

One
Two
Two

Two
Two
Two

and

@2 | Zero One Two
Zero | Zero One Two
One | One One Two
Two | Two One Two

[(Zero,)* One (,Zero)* (, Two)*]



That's How!

Let
D1 ‘ Zero One Two
Zero | Zero One Two
One | One Two Two
Two | Two Two Two

If candidate (1) is correct on each list of the form

and

®o ‘ Zero One Two
Zero | Zero One Two
One | One One Two
Two | Two One Two

[(Zero,)* One (,Zero)* (, Two)*]

and candidate () is correct on each list of the form

[(Zero, )" One, Two (,Zero)*]

then candidate is correct for associative & at arbitrary type.

20



A Knuth-like 0-1-2-Principle [V. 2008]

Given:

Theorem:

scanll (@ — a — a) — [a] — [a]
scanll (@) (x: xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]
data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = scanll () xs,

then the same holds for every type 7, xs :: [7], and
associative (©) 17 — 7 — 7.
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Using the Free Theorems Generator

Input: candidate :: (a -> a -> a) -> [a] -> [al

Output: forall t1,t2 in TYPES, f :: t1 -> t2.
forall g :: t1 -> t1 -> t1.
forall h :: t2 -> t2 -> t2.
(forall x :: tl. forall y :: tl.
f(gxy)=h(Ex (y)
==> (forall z :: [t1].
map f (candidate g z)
= candidate h (map f z))

22



Rephrased

For every choice of types 71,7 and functions f :: 71 — 7,
(®) 11— 1 — 711, and (B) =) — T2 — T

candidate (®
L X T1 2 ol [1] ( )[Tl]
f xXf = f = map f = map f
X T ..
T2 %72 3 2 ) by (@)[72]
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A Knuth-like 0-1-2-Principle [V. 2008]

Given:

Theorem:

scanll (@ — a — a) — [a] — [a]
scanll (@) (x: xs) = go x xs
where go x [] = [x]
go x (y :ys) = x: (go (xy) ys)

candidate : (¢ > a — a) — [a] — [q]
data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = scanll () xs,

then the same holds for every type 7, xs :: [7], and
associative (©) 17 — 7 — 7.
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Decomposing the 0-1-2-Principle

Proposition 1: If candidate (1) is correct on each list of the
form [(Zero,)* One (,Zero)* (, Two)*] and candidate (&>) is
correct on each list of the form [(Zero,)* One, Two (, Zero)*],

then for every n > 0,
candidate (++) [[k] | k < [0..n]] = [[0..k] | k < [0..n]] (*).
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Decomposing the 0-1-2-Principle

Proposition 1: If candidate (1) is correct on each list of the
form [(Zero,)* One (,Zero)* (, Two)*] and candidate (&>) is
correct on each list of the form [(Zero,)* One, Two (, Zero)*],

then for every n > 0,
candidate (++) [[k] | k < [0..n]] = [[0..k] | k < [0..n]] (*).

Proposition 2: If for every n > 0, (*) holds, then candidate is
correct for associative ¢ at arbitrary type.

[[k] | k < [0..n]]
candidate (+)

[Int] x [Int] — = [Int] ([Int]] - [[Int]]
fxf - f = map f = map f
TOX Tp T2 ™ - [12]

) candidate ()
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What Else?

» For parallel prefix computation, formalisation available
in Isabelle/HOL [Béhme 2007].
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» There is still an interesting story to tell behind how
“0-1-2", @1, Do, ... were found.
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What Else?

» For parallel prefix computation, formalisation available
in Isabelle/HOL [Béhme 2007].

» There is still an interesting story to tell behind how
“0-1-2", @1, Do, ... were found.

» For which other algorithm classes can one play
the same trick?

26
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